Chen Jiao, Gu Zonglin
Department of Medical Genetics and Prenatal Diagnosis, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Sci Rep. 2024 Dec 28;14(1):31342. doi: 10.1038/s41598-024-82805-w.
Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked. Consequently, the role of cholesterol in nanomaterial-biomembrane interactions remains poorly understood. In this study, we employ molecular dynamics (MD) simulations to explore the effect of graphene quantum dots (GQDs) on a realistic placental lipid membrane model, aiming to elucidate the role of cholesterol in these interactions. Our MD results reveal that both GQD monomers and clusters can spontaneously insert into the placental lipid membrane model, driven by strong van der Waals interaction energy. Further analyses indicate that cholesterol and POPC lipids primarily contribute to interfacial interactions. Notably, cholesterol can be squeezed into the bilayer interface, forming a unique structure where it is sandwiched between the GQD cluster and the membrane's bottom leaflet. More significantly, cholesterol, together with the GQD cluster, exhibits free lateral movement, suggesting a strong affinity of cholesterol for GQD clusters. These findings highlight the critical role of cholesterol in mediating GQD insertion into the biomembrane. Structural analyses of the membrane further demonstrate deformation of the placental lipid membrane model during GQD penetration. Finally, free energy calculations confirm that the insertion of both GQD monomers and clusters into the placental lipid membrane model is energetically favorable. Overall, this study not only sheds new light on the potential harmful effects of GQDs on realistic placental membranes but also provides the first theoretical evidence of the pivotal role of cholesterol in nanomaterial-biomembrane interactions, contributing to a deeper understanding of nanomaterial-cell membrane interactions.
在理论研究中,纳米材料与生物膜的相互作用是评估此类材料毒性的关键生物学过程。然而,许多研究通过使用仅包含一种或几种脂质类型的膜模型来简化这些相互作用,这与真实膜组成的复杂性有很大偏差。特别是,胆固醇这种普遍存在的脂质对于调节膜流动性至关重要,且与多种疾病密切相关,但常常被忽视。因此,胆固醇在纳米材料与生物膜相互作用中的作用仍知之甚少。在本研究中,我们采用分子动力学(MD)模拟来探索石墨烯量子点(GQD)对真实胎盘脂质膜模型的影响,旨在阐明胆固醇在这些相互作用中的作用。我们的MD结果表明,GQD单体和聚集体都能在强大的范德华相互作用能驱动下自发插入胎盘脂质膜模型。进一步分析表明,胆固醇和磷脂酰胆碱(POPC)脂质主要促成界面相互作用。值得注意的是,胆固醇可被挤压到双层界面中,形成一种独特的结构,即夹在GQD聚集体和膜的下层小叶之间。更重要的是,胆固醇与GQD聚集体一起表现出自由的横向移动,这表明胆固醇对GQD聚集体具有很强的亲和力。这些发现突出了胆固醇在介导GQD插入生物膜中的关键作用。膜的结构分析进一步证明了在GQD穿透过程中胎盘脂质膜模型的变形。最后,自由能计算证实GQD单体和聚集体插入胎盘脂质膜模型在能量上是有利的。总体而言,本研究不仅揭示了GQD对真实胎盘膜潜在的有害影响,还提供了胆固醇在纳米材料与生物膜相互作用中关键作用的首个理论证据,有助于更深入地理解纳米材料与细胞膜的相互作用。