Suppr超能文献

碳纳米管对模型细胞膜的破坏作用。

Disruption of Model Cell Membranes by Carbon Nanotubes.

作者信息

Corredor Charlie, Hou Wen-Che, Klein Steven A, Moghadam Babak Y, Goryll Michael, Doudrick Kyle, Westerhoff Paul, Posner Jonathan D

机构信息

Chemical Engineering, University of Washington, Seattle, WA 98115.

Environmental Engineering, Arizona State University, Tempe, Arizona 85287-6106.

出版信息

Carbon N Y. 2013 Aug;60:67-75. doi: 10.1016/j.carbon.2013.03.057.

Abstract

Carbon nanotubes (CNTs) have one of the highest production volumes among carbonaceous engineered nanoparticles (ENPs) worldwide and are have potential uses in applications including biomedicine, nanocomposites, and energy conversion. However, CNTs possible widespread usage and associated likelihood for biological exposures have driven concerns regarding their nanotoxicity and ecological impact. In this work, we probe the responses of planar suspended lipid bilayer membranes, used as model cell membranes, to functionalized multi-walled carbon nanotubes (MWCNT), CdSe/ZnS quantum dots, and a control organic compound, melittin, using an electrophysiological measurement platform. The electrophysiological measurements show that MWCNTs in a concentration range of 1.6 to 12 ppm disrupt lipid membranes by inducing significant transmembrane current fluxes, which suggest that MWCNTs insert and traverse the lipid bilayer membrane, forming transmembrane carbon nanotubes channels that allow the transport of ions. This paper demonstrates a direct measurement of ion migration across lipid bilayers induced by CNTs. Electrophysiological measurements can provide unique insights into the lipid bilayer-ENPs interactions and have the potential to serve as a preliminary screening tool for nanotoxicity.

摘要

碳纳米管(CNTs)在全球碳质工程纳米颗粒(ENPs)中产量位居前列,在生物医学、纳米复合材料和能量转换等应用领域具有潜在用途。然而,碳纳米管可能的广泛使用以及随之而来的生物暴露可能性引发了人们对其纳米毒性和生态影响的担忧。在这项工作中,我们使用电生理测量平台,探究作为模型细胞膜的平面悬浮脂质双分子层膜对功能化多壁碳纳米管(MWCNT)、CdSe/ZnS量子点以及对照有机化合物蜂毒肽的反应。电生理测量表明,浓度范围为1.6至12 ppm的多壁碳纳米管通过诱导显著的跨膜电流通量破坏脂质膜,这表明多壁碳纳米管插入并穿过脂质双分子层膜,形成允许离子运输的跨膜碳纳米管通道。本文展示了对碳纳米管诱导的离子跨脂质双分子层迁移的直接测量。电生理测量可为脂质双分子层与工程纳米颗粒的相互作用提供独特见解,并有可能作为纳米毒性的初步筛选工具。

相似文献

1
Disruption of Model Cell Membranes by Carbon Nanotubes.
Carbon N Y. 2013 Aug;60:67-75. doi: 10.1016/j.carbon.2013.03.057.
2
Membrane perturbation by carbon nanotube insertion: pathways to internalization.
Small. 2013 Nov 11;9(21):3639-46. doi: 10.1002/smll.201202640. Epub 2013 Feb 18.
3
Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.
Nature. 2014 Oct 30;514(7524):612-5. doi: 10.1038/nature13817.
4
Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes.
Sci Total Environ. 2017 Jan 1;574:771-780. doi: 10.1016/j.scitotenv.2016.09.150. Epub 2016 Oct 14.
5
Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs).
Sci Total Environ. 2016 Sep 15;565:777-786. doi: 10.1016/j.scitotenv.2016.05.025. Epub 2016 May 21.
6
Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes.
Ecotoxicol Environ Saf. 2016 Mar;125:61-71. doi: 10.1016/j.ecoenv.2015.11.036. Epub 2015 Dec 4.
7
Toxic effects of multi-walled carbon nanotubes on bivalves: Comparison between functionalized and nonfunctionalized nanoparticles.
Sci Total Environ. 2018 May 1;622-623:1532-1542. doi: 10.1016/j.scitotenv.2017.10.031. Epub 2017 Oct 20.
9
Lack of mutagenic effect by multi-walled functionalized carbon nanotubes in the somatic cells of Drosophila melanogaster.
Food Chem Toxicol. 2013 Dec;62:355-60. doi: 10.1016/j.fct.2013.08.051. Epub 2013 Aug 28.
10
Lipid bilayers covalently anchored to carbon nanotubes.
Langmuir. 2012 May 29;28(21):8174-82. doi: 10.1021/la301094h. Epub 2012 May 17.

引用本文的文献

1
Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film.
Nanomaterials (Basel). 2025 Aug 14;15(16):1244. doi: 10.3390/nano15161244.
2
Challenges and opportunities in the application of carbon nanotubes as membrane channels to improve mass transfer to cells.
RSC Adv. 2025 Jul 14;15(30):24624-24638. doi: 10.1039/d5ra02939b. eCollection 2025 Jul 10.
4
Carbon-Based Materials for Articular Tissue Engineering: From Innovative Scaffolding Materials toward Engineered Living Carbon.
Adv Healthc Mater. 2022 Jan;11(1):e2101834. doi: 10.1002/adhm.202101834. Epub 2021 Oct 12.
5
Yttrium Residues in MWCNT Enable Assessment of MWCNT Removal during Wastewater Treatment.
Nanomaterials (Basel). 2019 May 1;9(5):670. doi: 10.3390/nano9050670.
6
Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate).
Polymers (Basel). 2017 Jun 30;9(7):260. doi: 10.3390/polym9070260.
8
Design, challenge, and promise of stimuli-responsive nanoantibiotics.
Nano Converg. 2016;3(1):26. doi: 10.1186/s40580-016-0085-7. Epub 2016 Oct 15.
9
The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis.
Redox Biol. 2016 Oct;9:264-275. doi: 10.1016/j.redox.2016.08.009. Epub 2016 Aug 21.

本文引用的文献

1
Role of nanoparticle surface functionality in the disruption of model cell membranes.
Langmuir. 2012 Nov 27;28(47):16318-26. doi: 10.1021/la302654s. Epub 2012 Sep 6.
2
Engineering particles for therapeutic delivery: prospects and challenges.
ACS Nano. 2012 May 22;6(5):3663-9. doi: 10.1021/nn3016162. Epub 2012 Apr 30.
3
Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
Environ Sci Technol. 2012 Feb 7;46(3):1869-76. doi: 10.1021/es203661k. Epub 2012 Jan 30.
4
Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation.
Nat Nanotechnol. 2011 Sep 18;6(11):714-9. doi: 10.1038/nnano.2011.151.
5
Distribution of fullerene nanomaterials between water and model biological membranes.
Langmuir. 2011 Oct 4;27(19):11899-905. doi: 10.1021/la2017837. Epub 2011 Sep 9.
6
Carbon nanotubes activate store-operated calcium entry in human blood platelets.
ACS Nano. 2011 Jul 26;5(7):5808-13. doi: 10.1021/nn2015369. Epub 2011 Jun 8.
7
Octanol-water distribution of engineered nanomaterials.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2011;46(6):636-47. doi: 10.1080/10934529.2011.562859.
8
Electrophysiological characterization of membrane disruption by nanoparticles.
ACS Nano. 2011 May 24;5(5):3599-606. doi: 10.1021/nn103320j. Epub 2011 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验