文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于BP算法的模糊理论在突发公共卫生事件城市协同治理中的分析

The analysis of urban collaborative governance in public health emergencies with fuzzy theory based on BP algorithm.

作者信息

Yu Ting, Sang Peidong

机构信息

School of Management Science and Engineering, Shandong Jianzhu University, Jinan, 250101, China.

出版信息

Sci Rep. 2024 Dec 28;14(1):31427. doi: 10.1038/s41598-024-82966-8.


DOI:10.1038/s41598-024-82966-8
PMID:39732906
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11682215/
Abstract

This study seeks to improve urban supply chain management and collaborative governance in the context of public health emergencies (PHEs) by integrating fuzzy theory with the Back Propagation Neural Network (BPNN) algorithm. By combining these two approaches, an early warning mechanism for supply chain risks during PHEs is developed. The study employs Matlab software to simulate supply chain risks, incorporating fuzzy inference techniques with the adaptive data modeling capabilities of neural networks for both training and testing. The results demonstrate that the proposed model effectively identifies factors contributing to supply chain deterioration, with a warning error as low as 0.001, significantly enhancing the accuracy and timeliness of demand forecasting. The BPNN algorithm, through its self-learning and adaptive features, facilitates dynamic optimization and precise scheduling across various stages of the supply chain. This capability is particularly valuable in addressing challenges associated with sudden demand spikes and resource allocation. As a result, the mechanism is able to accurately and promptly identify adverse trends in the supply chain, thereby enhancing the efficiency and flexibility of urban emergency responses, mitigating risks, and offering both theoretical and practical contributions to urban collaborative governance.

摘要

本研究旨在通过将模糊理论与反向传播神经网络(BPNN)算法相结合,在公共卫生突发事件(PHEs)背景下改善城市供应链管理与协同治理。通过结合这两种方法,开发了一种针对公共卫生突发事件期间供应链风险的预警机制。该研究采用Matlab软件模拟供应链风险,将模糊推理技术与神经网络的自适应数据建模能力相结合用于训练和测试。结果表明,所提出的模型能有效识别导致供应链恶化的因素,预警误差低至0.001显著提高了需求预测的准确性和及时性。BPNN算法凭借其自学习和自适应特性,有助于在供应链各个阶段进行动态优化和精确调度。这种能力在应对与突发需求高峰和资源分配相关的挑战时尤为宝贵。因此,该机制能够准确、及时地识别供应链中的不利趋势,从而提高城市应急响应的效率和灵活性,降低风险,并为城市协同治理提供理论和实践贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/8060321a84ab/41598_2024_82966_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/e3b2716857b5/41598_2024_82966_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/77a3e829ad65/41598_2024_82966_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/680b2641bfcc/41598_2024_82966_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/a33d1a76c95c/41598_2024_82966_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/7a71e206344e/41598_2024_82966_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/2c0664f7e586/41598_2024_82966_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/15185bbee188/41598_2024_82966_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/69134d591ecd/41598_2024_82966_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/11c1ae996b66/41598_2024_82966_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/e72daa064c25/41598_2024_82966_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/8060321a84ab/41598_2024_82966_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/e3b2716857b5/41598_2024_82966_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/77a3e829ad65/41598_2024_82966_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/680b2641bfcc/41598_2024_82966_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/a33d1a76c95c/41598_2024_82966_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/7a71e206344e/41598_2024_82966_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/2c0664f7e586/41598_2024_82966_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/15185bbee188/41598_2024_82966_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/69134d591ecd/41598_2024_82966_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/11c1ae996b66/41598_2024_82966_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/e72daa064c25/41598_2024_82966_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3004/11682215/8060321a84ab/41598_2024_82966_Fig11_HTML.jpg

相似文献

[1]
The analysis of urban collaborative governance in public health emergencies with fuzzy theory based on BP algorithm.

Sci Rep. 2024-12-28

[2]
Optimization of urban emergency support material distribution under major public health emergencies based on improved sparrow search algorithm.

Sci Prog. 2023

[3]
Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.

Environ Sci Pollut Res Int. 2021-5

[4]
A method for managing scientific research project resource conflicts and predicting risks using BP neural networks.

Sci Rep. 2024-4-22

[5]
Comparative assessment of deep belief network and hybrid adaptive neuro-fuzzy inference system model based on a meta-heuristic optimization algorithm for precise predictions of the potential evapotranspiration.

Environ Sci Pollut Res Int. 2024-6

[6]
An Improved Migratory Birds Optimization Algorithm for Closed- Loop Supply Chain Network Planning in a Fuzzy Environment.

PLoS One. 2024

[7]
A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network.

PLoS One. 2018-2-8

[8]
Prediction of flood abnormalities for improved public safety using a modified adaptive neuro-fuzzy inference system.

Water Sci Technol. 2006

[9]
Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network.

Comput Methods Programs Biomed. 2019-8-8

[10]
Design of Fuzzy Aided Cognition System for International Economic and Trade Information under Supply Chain Management.

Comput Math Methods Med. 2022

本文引用的文献

[1]
Dynamic changes and improvement paths of China's emergency logistics response capabilities under public emergencies-research based on the entropy weight TOPSIS method.

Front Public Health. 2024

[2]
A survey of multi-criteria decision-making techniques for green logistics and low-carbon transportation systems.

Environ Sci Pollut Res Int. 2023-4

[3]
Recommended psychological crisis intervention response to the 2019 novel coronavirus pneumonia outbreak in China: a model of West China Hospital.

Precis Clin Med. 2020-3

[4]
Designing an integrated responsive-green-cold vaccine supply chain network using Internet-of-Things: artificial intelligence-based solutions.

Ann Oper Res. 2022-5-5

[5]
At the Epicenter of COVID-19-the Tragic Failure of the Global Supply Chain for Medical Supplies.

Front Public Health. 2020

[6]
Fangcang shelter hospitals: a novel concept for responding to public health emergencies.

Lancet. 2020-4-2

[7]
Challenges to the system of reserve medical supplies for public health emergencies: reflections on the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in China.

Biosci Trends. 2020-2-17

[8]
The Flint Water Crisis: A Coordinated Public Health Emergency Response and Recovery Initiative.

J Public Health Manag Pract. 2019

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索