Burian Sergii, Shportun Yevhenii, Yaroshchuk Andriy, Bulavin Leonid, Lacroix David, Isaiev Mykola
Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine.
Department of Macrokinetics natural disperse systems, F.D. Ovcharenko Institute of Biocolloidal Chemistry, Kyiv, 03142, Ukraine.
Sci Rep. 2024 Dec 28;14(1):31340. doi: 10.1038/s41598-024-82683-2.
The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles. The complexity increases further at the nanoscale, where the significant volume of the interphase region causes ambiguity in defining the "dividing surface." In this study, we use molecular dynamics simulations to investigate the wetting dynamics of a "cylindrical nanodroplet" and an argon nanofilm. Through analysis of microscopic density distribution maps and tension tensor distributions within the Gibbs framework, we identified equimolar and tension surfaces at both liquid-gas and liquid-solid interfaces. Our results show over 10% discrepancies between equilibrium contact angles calculated for equimolar surfaces and those based on tension surfaces in the case of the cylindrical nanodroplet. We observed a clear dependence of wetting contact angles on the cross-sectional radius of cylindrical droplets with a straight three-phase contact line. As the radius decreases, the differences between contact angles at equimolar and tension surfaces increase, while for larger droplets, these differences diminish and become negligible.
流体的润湿性在界面与表面科学的各个领域中起着至关重要的作用。接触角是润湿性的一个基本指标。然而,即使在宏观尺度下准确量化润湿现象也常常面临挑战,尤其是由于后退接触角和前进接触角之间的滞后现象。在纳米尺度下,这种复杂性进一步增加,因为相间区域的大量体积导致在定义“分隔表面”时存在模糊性。在本研究中,我们使用分子动力学模拟来研究“圆柱形纳米液滴”和氩纳米膜的润湿动力学。通过在吉布斯框架内分析微观密度分布图和张力张量分布,我们确定了液 - 气和液 - 固界面处的等摩尔表面和张力表面。我们的结果表明,对于圆柱形纳米液滴,在等摩尔表面计算的平衡接触角与基于张力表面计算的平衡接触角之间存在超过10%的差异。我们观察到具有直三相接触线的圆柱形液滴的润湿接触角明显依赖于其横截面半径。随着半径减小,等摩尔表面和张力表面处的接触角差异增大,而对于较大的液滴,这些差异减小并变得可以忽略不计。