Djari Anis, Madignier Guillaume, Chervin Christian, van der Rest Benoît, Giovannoni James J, Bouzayen Mondher, Pirrello Julien, Maza Elie
Laboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France.
Fondation Jean Poupelain, Cognac, Javrezac, 16100, France.
Sci Rep. 2024 Dec 28;14(1):31278. doi: 10.1038/s41598-024-82651-w.
Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with its data normalization step being crucial for ensuring accuracy. Currently, the most widely used normalization method is based on the use of reference genes, assumed to be stably expressed across all experimental conditions. In the present study, we show that finding a stable combination of genes, regardless of their individual stability, outperforms standard reference genes for RT-qPCR data normalization. A stable combination of genes consists of a fixed number of genes whose individual expression balance each other all along experimental conditions of interest. Moreover, the present study shows that such an optimal combination of genes can be found using a comprehensive database of RNA-Seq data. Indeed, assuming that such a comprehensive database contains accurate gene expression profiles, we can extract in silico, by the way of the mathematical variance calculation, a stable combination of genes that reflects in vivo stability. As a case study, this new method was developed using the tomato model plant, with corresponding RNA-Seq data from the TomExpress database. However, the method is potentially applicable to other organisms with available RNA-seq data. Our results demonstrate the superiority of the reported method over commonly used housekeeping genes or other stably expressed genes. We therefore recommend the use of our new method together with classic ones in order to always obtain the best reference genes for a given experimental design.
基因表达谱分析在生命科学的各个领域都至关重要,无论是医学、环境还是植物领域,对于基础研究和应用研究皆是如此。尽管出现了微阵列和高通量测序技术,但qPCR仍然是基因表达分析的标准方法,其数据归一化步骤对于确保准确性至关重要。目前,使用最广泛的归一化方法是基于使用参考基因,假定这些基因在所有实验条件下都能稳定表达。在本研究中,我们表明,找到一个稳定的基因组合,无论其单个基因的稳定性如何,在RT-qPCR数据归一化方面都优于标准参考基因。一个稳定的基因组合由固定数量的基因组成,这些基因在感兴趣的所有实验条件下其个体表达相互平衡。此外,本研究表明,可以使用RNA-Seq数据的综合数据库找到这样一个最佳基因组合。事实上,假设这样一个综合数据库包含准确的基因表达谱,我们可以通过数学方差计算在计算机上提取一个反映体内稳定性的稳定基因组合。作为一个案例研究,这种新方法是使用番茄模式植物以及来自TomExpress数据库的相应RNA-Seq数据开发的。然而,该方法可能适用于其他有可用RNA-seq数据的生物体。我们的结果证明了所报道的方法优于常用的管家基因或其他稳定表达的基因。因此,我们建议将我们的新方法与经典方法一起使用,以便始终为给定的实验设计获得最佳参考基因。