Suppr超能文献

利用分子动力学模拟进行活性位点研究以解释脂肪酶在有机溶剂中的动力学

Active Site Studies to Explain Kinetics of Lipases in Organic Solvents Using Molecular Dynamics Simulations.

作者信息

Tjørnelund Helena D, Brask Jesper, Woodley John M, Peters Günther H J

机构信息

Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

Novonesis A/S, 2800 Kgs. Lyngby, Denmark.

出版信息

J Phys Chem B. 2025 Jan 9;129(1):475-486. doi: 10.1021/acs.jpcb.4c05738. Epub 2024 Dec 29.

Abstract

This study investigates the intricate dynamics underlying lipase performance in organic solvents using comprehensive molecular dynamics (MD) simulations, supported by enzyme kinetics data. The study reveals that a single criterion can neither predict nor explain lipase activity in organic solvents, indicating the need for a comprehensive approach. Three lipases were included in this study: lipase B (CALB), lipase (RML), and lipase (TLL). The lipases were investigated in acetonitrile, methyl -butyl ether, and hexane with increasing water activity. Computational investigations reveal that CALB's activity is negatively correlated to water cluster formations on its surface. In contrast, TLL's and RML's activity profiles show no negative effects of high water activity. However, TLL's and RML's activities are highly correlated to the conformation and stability of their active site regions. This study may pave the way for tailored applications of lipases, highlighting some of the factors that should be considered when lipase-catalyzed reactions are designed.

摘要

本研究利用全面的分子动力学(MD)模拟,并辅以酶动力学数据,探究了有机溶剂中脂肪酶性能背后的复杂动力学。研究表明,单一标准既无法预测也无法解释有机溶剂中脂肪酶的活性,这表明需要一种全面的方法。本研究纳入了三种脂肪酶:脂肪酶B(CALB)、脂肪酶(RML)和脂肪酶(TLL)。在水活度不断增加的乙腈、甲基叔丁基醚和己烷中对这些脂肪酶进行了研究。计算研究表明,CALB的活性与其表面水簇的形成呈负相关。相比之下,TLL和RML的活性曲线显示高水活度没有负面影响。然而,TLL和RML的活性与其活性位点区域的构象和稳定性高度相关。本研究可能为脂肪酶的定制应用铺平道路,突出了设计脂肪酶催化反应时应考虑的一些因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a9f/11726617/458d4483d258/jp4c05738_0001.jpg

相似文献

1
Active Site Studies to Explain Kinetics of Lipases in Organic Solvents Using Molecular Dynamics Simulations.
J Phys Chem B. 2025 Jan 9;129(1):475-486. doi: 10.1021/acs.jpcb.4c05738. Epub 2024 Dec 29.
2
Protein dynamics in organic media at varying water activity studied by molecular dynamics simulation.
J Phys Chem B. 2012 Mar 1;116(8):2575-85. doi: 10.1021/jp211054u. Epub 2012 Feb 22.
3
Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.
Chem Phys Lipids. 2013 Sep;174:48-54. doi: 10.1016/j.chemphyslip.2013.06.003. Epub 2013 Jul 23.
4
Cutinases as stereoselective catalysts: Specific activity and enantioselectivity of cutinases and lipases for menthol and its analogs.
Enzyme Microb Technol. 2020 Feb;133:109467. doi: 10.1016/j.enzmictec.2019.109467. Epub 2019 Nov 12.
5
Solvent-induced lid opening in lipases: a molecular dynamics study.
Protein Sci. 2010 Nov;19(11):2122-30. doi: 10.1002/pro.493.
6
Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents.
Bioprocess Biosyst Eng. 2020 Nov;43(11):2107-2115. doi: 10.1007/s00449-020-02399-1. Epub 2020 Jun 27.
8
Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent.
J Biotechnol. 2013 Feb 10;163(3):346-52. doi: 10.1016/j.jbiotec.2012.11.006. Epub 2012 Nov 21.
9
Effects of Solvents on the Glycerolysis Performance of the SBA-15 Supported Lipases.
J Oleo Sci. 2021;70(3):385-395. doi: 10.5650/jos.ess20228.

引用本文的文献

1
Selective Acetylation of Unprotected Thioglycosides and Fully Unprotected Monosaccharides with Candida antarctica Lipase‑B.
ACS Omega. 2025 May 7;10(19):20047-20053. doi: 10.1021/acsomega.5c02467. eCollection 2025 May 20.
2
Papain-Catalyzed Hydrolysis of -Benzoyl-arginine--nitroanilide in an Aqueous-Organic Medium.
ACS Omega. 2025 Feb 24;10(8):8601-8610. doi: 10.1021/acsomega.4c11059. eCollection 2025 Mar 4.

本文引用的文献

2
Water-mediated active conformational transitions of lipase on organic solvent interfaces.
Int J Biol Macromol. 2024 Oct;277(Pt 2):134056. doi: 10.1016/j.ijbiomac.2024.134056. Epub 2024 Jul 27.
3
Solvent Tolerance Improvement of Lipases Enhanced Their Applications: State of the Art.
Molecules. 2024 May 22;29(11):2444. doi: 10.3390/molecules29112444.
4
Enzymes in "Green" Synthetic Chemistry: Laccase and Lipase.
Molecules. 2024 Feb 24;29(5):989. doi: 10.3390/molecules29050989.
5
lipase B performance in organic solvent at varying water activities studied by molecular dynamics simulations.
Comput Struct Biotechnol J. 2023 Oct 31;21:5451-5462. doi: 10.1016/j.csbj.2023.10.049. eCollection 2023.
6
Do they make a good match? Molecular dynamics studies on CALB-catalyzed esterification of 3-phenylpropionic and cinnamic acids.
Arch Biochem Biophys. 2023 Dec;750:109807. doi: 10.1016/j.abb.2023.109807. Epub 2023 Nov 1.
8
The Recent Advances in the Utility of Microbial Lipases: A Review.
Microorganisms. 2023 Feb 17;11(2):510. doi: 10.3390/microorganisms11020510.
9
Effect of Organic Solvents on the Structure and Activity of a Minimal Lipase.
J Org Chem. 2022 Feb 4;87(3):1669-1678. doi: 10.1021/acs.joc.1c01136. Epub 2021 Oct 27.
10
OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space.
J Chem Theory Comput. 2021 Jul 13;17(7):4291-4300. doi: 10.1021/acs.jctc.1c00302. Epub 2021 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验