Suppr超能文献

评估人工智能在减重手术中的能力:关于ChatGPT-4和DALL·E 3识别与绘图准确性的研究

Evaluating AI Capabilities in Bariatric Surgery: A Study on ChatGPT-4 and DALL·E 3's Recognition and Illustration Accuracy.

作者信息

Mahjoubi Mohammad, Shahabi Shahab, Sheikhbahaei Saba, Jazi Amir Hossein Davarpanah

机构信息

Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran.

Hunter New England Local Health District, Newcastle, Australia.

出版信息

Obes Surg. 2025 Feb;35(2):638-641. doi: 10.1007/s11695-024-07653-z. Epub 2024 Dec 29.

Abstract

BACKGROUND

With the rise of artificial intelligence (AI) in medical education, tools like OpenAI's ChatGPT-4 and DALL·E 3 have potential applications in enhancing learning materials. This study aims to evaluate ChatGPT-4o's proficiency in recognizing bariatric surgical procedures from illustrations and assess DALL·E 3's effectiveness in generating accurate surgical illustrations.

METHODS

Illustrations of six bariatric surgical procedures (One Anastomosis Gastric Bypass, Roux-en-Y Gastric Bypass, Single Anastomosis Duodeno-Ileal Bypass with Sleeve Gastrectomy, Sleeve Gastrectomy, Biliopancreatic Diversion, and Adjustable Gastric Banding) were sourced from the IFSO Atlas of Metabolic and Bariatric Surgery. ChatGPT-4 was tasked with identifying each procedure based on these illustrations to evaluate its classification accuracy. Simultaneously, DALL·E 3 was prompted with the specific names of each procedure to generate corresponding medical illustrations.

RESULTS

ChatGPT-4 correctly identified only the Adjustable Gastric Banding illustration, misclassifying the other five procedures. DALL·E 3 failed to produce accurate illustrations for all six procedures.

CONCLUSION

The study underscores the need for further evaluation of AI in bariatric surgery. Both ChatGPT-4 and DALL·E 3, while promising, have significant limitations in recognizing and generating accurate illustrations of bariatric surgical procedures. These findings call for continued research and development to make AI models suitable for medical education applications in bariatric surgery.

摘要

背景

随着人工智能(AI)在医学教育中的兴起,像OpenAI的ChatGPT-4和DALL·E 3这样的工具在增强学习材料方面具有潜在应用。本研究旨在评估ChatGPT-4识别减肥手术程序插图的能力,并评估DALL·E 3生成准确手术插图的有效性。

方法

六种减肥手术程序(单吻合口胃旁路术、Roux-en-Y胃旁路术、单吻合口十二指肠-回肠旁路术联合袖状胃切除术、袖状胃切除术、胆胰转流术和可调节胃束带术)的插图来源于国际肥胖与代谢病外科联盟(IFSO)代谢与减肥外科学图谱。ChatGPT-4的任务是根据这些插图识别每种手术程序,以评估其分类准确性。同时,向DALL·E 3输入每种手术程序的具体名称,以生成相应的医学插图。

结果

ChatGPT-4仅正确识别了可调节胃束带术的插图,将其他五种手术程序误分类。DALL·E 3未能为所有六种手术程序生成准确的插图。

结论

该研究强调了在减肥手术中进一步评估人工智能的必要性。ChatGPT-4和DALL·E 3虽然很有前景,但在识别和生成减肥手术程序的准确插图方面存在重大局限性。这些发现呼吁继续进行研究和开发,以使人工智能模型适用于减肥手术的医学教育应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验