Li Yusheng, Li Yiming, Shi Jiangjian, Lou Licheng, Xu Xiao, Cui Yuqi, Wu Jionghua, Li Dongmei, Luo Yanhong, Wu Huijue, Shen Qing, Meng Qingbo
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Faculty of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
Fundam Res. 2023 Feb 16;4(6):1650-1656. doi: 10.1016/j.fmre.2023.02.002. eCollection 2024 Nov.
Fast and non-destructive analysis of material defect is a crucial demand for semiconductor devices. Herein, we are devoted to exploring a solar-cell defect analysis method based on machine learning of the modulated transient photovoltage (m-TPV) measurement. The perturbation photovoltage generation and decay mechanism of the solar cell is firstly clarified for this study. High-throughput electrical transient simulations are further carried out to establish a database containing millions of m-TPV curves. This database is subsequently used to train an artificial neural network to correlate the m-TPV and defect properties of the perovskite solar cell. A Back Propagation neural network has been screened out and applied to provide a multiple parameter defect analysis of the cell. This analysis reveals that in a practical solar cell, compared to the defect density, the charge capturing cross-section plays a more critical role in influencing the charge recombination properties. We believe this defect analysis approach will play a more important and diverse role for solar cell studies.
对材料缺陷进行快速且无损的分析是半导体器件的一项关键需求。在此,我们致力于探索一种基于调制瞬态光电压(m-TPV)测量的机器学习的太阳能电池缺陷分析方法。本研究首先阐明了太阳能电池的光电压产生和衰减机制。进一步进行了高通量电瞬态模拟,以建立一个包含数百万条m-TPV曲线的数据库。随后,该数据库被用于训练人工神经网络,以关联钙钛矿太阳能电池的m-TPV和缺陷特性。筛选出了一个反向传播神经网络,并将其应用于对电池进行多参数缺陷分析。该分析表明,在实际的太阳能电池中,与缺陷密度相比,电荷俘获截面在影响电荷复合特性方面起着更关键的作用。我们相信这种缺陷分析方法将在太阳能电池研究中发挥更重要和多样的作用。