Suppr超能文献

基于深度学习的颅内动脉瘤性蛛网膜下腔出血多类别分割

Deep learning-based multiclass segmentation in aneurysmal subarachnoid hemorrhage.

作者信息

Kiewitz Julia, Aydin Orhun Utku, Hilbert Adam, Gultom Marie, Nouri Anouar, Khalil Ahmed A, Vajkoczy Peter, Tanioka Satoru, Ishida Fujimaro, Dengler Nora F, Frey Dietmar

机构信息

CLAIM - Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

Department of Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

出版信息

Front Neurol. 2024 Dec 13;15:1490216. doi: 10.3389/fneur.2024.1490216. eCollection 2024.

Abstract

INTRODUCTION

Radiological scores used to assess the extent of subarachnoid hemorrhage are limited by intrarater and interrater variability and do not utilize all available information from the imaging. Image segmentation enables precise identification and delineation of objects or regions of interest and offers the potential for automatization of score assessments using precise volumetric information. Our study aims to develop a deep learning model that enables automated multiclass segmentation of structures and pathologies relevant for aneurysmal subarachnoid hemorrhage outcome prediction.

METHODS

A set of 73 non-contrast CT scans of patients with aneurysmal subarachnoid hemorrhage were included. Six target classes were manually segmented to create a multiclass segmentation ground truth: subarachnoid, intraventricular, intracerebral and subdural hemorrhage, aneurysms and ventricles. We used the 2d and 3d configurations of the nnU-Net deep learning biomedical image segmentation framework. Additionally, we performed an interrater reliability analysis in our internal test set ( = 20) and an external validation on a set of primary intracerebral hemorrhage patients ( = 104). Segmentation performance was evaluated using the Dice coefficient, volumetric similarity and sensitivity.

RESULTS

The nnU-Net-based segmentation model demonstrated performance closely matching the interrater reliability between two senior raters for the subarachnoid hemorrhage, ventricles, intracerebral hemorrhage classes and overall hemorrhage segmentation. For the hemorrhage segmentation a median Dice coefficient of 0.664 was achieved by the 3d model (0.673 = 2d model). In the external test set a median Dice coefficient of 0.831 for the hemorrhage segmentation was achieved.

CONCLUSION

Deep learning enables automated multiclass segmentation of aneurysmal subarachnoid hemorrhage-related pathologies and achieves performance approaching that of a human rater. This enables automatized volumetries of pathologies identified on admission CTs in patients with subarachnoid hemorrhage potentially leading to imaging biomarkers for improved outcome prediction.

摘要

引言

用于评估蛛网膜下腔出血程度的放射学评分受到评分者内部和评分者间变异性的限制,且未利用影像学的所有可用信息。图像分割能够精确识别和描绘感兴趣的物体或区域,并提供使用精确体积信息实现评分评估自动化的潜力。我们的研究旨在开发一种深度学习模型,实现与动脉瘤性蛛网膜下腔出血预后预测相关的结构和病变的自动多类分割。

方法

纳入一组73例动脉瘤性蛛网膜下腔出血患者的非增强CT扫描。手动分割六个目标类别以创建多类分割真值:蛛网膜下腔、脑室内、脑内和硬膜下出血、动脉瘤和脑室。我们使用了nnU-Net深度学习生物医学图像分割框架的2D和3D配置。此外,我们在内部测试集(n = 20)中进行了评分者间可靠性分析,并在一组原发性脑出血患者(n = 104)上进行了外部验证。使用Dice系数、体积相似性和敏感性评估分割性能。

结果

基于nnU-Net的分割模型在蛛网膜下腔出血、脑室、脑内出血类别以及总体出血分割方面的表现与两位高级评分者之间的评分者间可靠性密切匹配。对于出血分割,3D模型的Dice系数中位数为0.664(2D模型为0.673)。在外部测试集中,出血分割的Dice系数中位数为0.831。

结论

深度学习能够实现动脉瘤性蛛网膜下腔出血相关病变的自动多类分割,并达到接近人类评分者的性能。这使得能够对蛛网膜下腔出血患者入院CT上识别出的病变进行自动体积测量,有可能产生用于改善预后预测的影像学生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad47/11671301/61f643210f22/fneur-15-1490216-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验