Suppr超能文献

深度学习辅助非对比 CT 扫描中动脉瘤性蛛网膜下腔出血的识别和定量:Hybrid 2D/3D UNet 的开发和外部验证。

Deep learning-assisted identification and quantification of aneurysmal subarachnoid hemorrhage in non-contrast CT scans: Development and external validation of Hybrid 2D/3D UNet.

机构信息

Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.

School of Physics and Technology, Wuhan University, Wuhan, Hubei 430060, China.

出版信息

Neuroimage. 2023 Oct 1;279:120321. doi: 10.1016/j.neuroimage.2023.120321. Epub 2023 Aug 11.

Abstract

Accurate stroke assessment and consequent favorable clinical outcomes rely on the early identification and quantification of aneurysmal subarachnoid hemorrhage (aSAH) in non-contrast computed tomography (NCCT) images. However, hemorrhagic lesions can be complex and difficult to distinguish manually. To solve these problems, here we propose a novel Hybrid 2D/3D UNet deep-learning framework for automatic aSAH identification and quantification in NCCT images. We evaluated 1824 consecutive patients admitted with aSAH to four hospitals in China between June 2018 and May 2022. Accuracy and precision, Dice scores and intersection over union (IoU), and interclass correlation coefficients (ICC) were calculated to assess model performance, segmentation performance, and correlations between automatic and manual segmentation, respectively. A total of 1355 patients with aSAH were enrolled: 931, 101, 179, and 144 in four datasets, of whom 326 were scanned with Siemens, 640 with Philips, and 389 with GE Medical Systems scanners. Our proposed deep-learning method accurately identified (accuracies 0.993-0.999) and segmented (Dice scores 0.550-0.897) hemorrhage in both the internal and external datasets, even combinations of hemorrhage subtypes. We further developed a convenient AI-assisted platform based on our algorithm to assist clinical workflows, whose performance was comparable to manual measurements by experienced neurosurgeons (ICCs 0.815-0.957) but with greater efficiency and reduced cost. While this tool has not yet been prospectively tested in clinical practice, our innovative hybrid network algorithm and platform can accurately identify and quantify aSAH, paving the way for fast and cheap NCCT interpretation and a reliable AI-based approach to expedite clinical decision-making for aSAH patients.

摘要

准确的卒中评估和随后的良好临床结局依赖于在非增强计算机断层扫描 (NCCT) 图像中早期识别和量化动脉瘤性蛛网膜下腔出血 (aSAH)。然而,出血病变可能很复杂,难以手动区分。为了解决这些问题,我们在这里提出了一种新的混合 2D/3D UNet 深度学习框架,用于在 NCCT 图像中自动识别和量化 aSAH。我们评估了 2018 年 6 月至 2022 年 5 月期间在中国四家医院就诊的 1824 例连续 aSAH 患者。分别计算准确性和精度、Dice 评分和交并比 (IoU) 以及组间相关系数 (ICC),以评估模型性能、分割性能以及自动和手动分割之间的相关性。共纳入 1355 例 aSAH 患者:四个数据集分别为 931 例、101 例、179 例和 144 例,其中 326 例使用西门子扫描仪扫描,640 例使用飞利浦扫描仪扫描,389 例使用通用电气医疗系统扫描仪扫描。我们提出的深度学习方法准确地识别(准确率为 0.993-0.999)和分割(Dice 评分 0.550-0.897)内部和外部数据集的出血,甚至是出血亚型的组合。我们进一步基于我们的算法开发了一个方便的人工智能辅助平台来辅助临床工作流程,其性能与经验丰富的神经外科医生的手动测量相当(ICC 为 0.815-0.957),但效率更高,成本更低。虽然该工具尚未在临床实践中前瞻性测试,但我们的创新混合网络算法和平台可以准确识别和量化 aSAH,为快速、廉价的 NCCT 解读和可靠的基于人工智能的方法铺平道路,以加快 aSAH 患者的临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验