Koita Rina, Oikawa Sae, Tani Taisei, Matsuda Masaru, Kawamura Akinori
Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan.
Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Japan.
Bio Protoc. 2024 Dec 20;14(24):e5142. doi: 10.21769/BioProtoc.5142.
Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results. Consequently, providing researchers with accessible and cost-effective phenotype analysis methods is crucial. A prevalent technique for investigating calcified bone development in these species involves using transgenic fish that express fluorescent proteins labeling calcified bones; however, acquiring these fish and isolating appropriate crosses can be time-consuming. We present a comprehensive protocol for visualizing ossified bones in zebrafish and medaka larvae and juveniles using calcein and alizarin red S staining, which is both economical and efficient. This method, applicable to live specimens during the ossification of bones, avoids apparent alterations in skeletal morphology and allows for the use of different fluorescent dyes in conjunction with transgenic labeling, thus enhancing the analysis of developmental processes in calcifying bones, such as vertebrae and fin rays. Key features • The calcified bones of alive zebrafish and medaka larvae and juveniles can be visualized repeatedly using simple and inexpensive calcein and alizarin red S. • No need to use transgenic fish to visualize ossified bones, allowing for rapid analysis of bone phenotypes in mutants. • Double staining is possible in transgenic fish with reporter genes such as and using alizarin red S or calcein, which exhibit different fluorescence. • Ossification processes of bones such as vertebrae, ribs, and fin rays can be analyzed in mutants.
斑马鱼和青鳉是用于遗传学研究的重要模式脊椎动物。CRISPR-Cas9技术的出现极大地提高了我们在斑马鱼和青鳉中产生特定基因突变体的能力。分析这些突变体的表型对于阐明基因功能至关重要,尽管此类分析常常会产生意想不到的结果。因此,为研究人员提供便捷且经济高效的表型分析方法至关重要。在这些物种中,一种普遍用于研究钙化骨发育的技术是使用表达标记钙化骨的荧光蛋白的转基因鱼;然而,获取这些鱼并分离合适的杂交品种可能很耗时。我们提出了一种使用钙黄绿素和茜素红S染色来可视化斑马鱼和青鳉幼体及幼鱼中骨化骨骼的综合方案,该方案既经济又高效。这种方法适用于骨骼骨化过程中的活体标本,可避免骨骼形态出现明显改变,并允许将不同的荧光染料与转基因标记结合使用,从而增强对钙化骨(如椎骨和鳍条)发育过程的分析。关键特性 • 使用简单且廉价的钙黄绿素和茜素红S可反复可视化活体斑马鱼和青鳉幼体及幼鱼的钙化骨骼。 • 无需使用转基因鱼来可视化骨化骨骼,从而能够快速分析突变体中的骨表型。 • 使用茜素红S或钙黄绿素(它们发出不同荧光)对带有报告基因(如 和 ) 的转基因鱼进行双重染色是可行的。 • 可以在突变体中分析椎骨、肋骨和鳍条等骨骼的骨化过程。