Mazzocato Ylenia, Frasson Nicola, Sample Matthew, Fregonese Cristian, Pavan Angela, Caregnato Alberto, Simeoni Marta, Scarso Alessandro, Cendron Laura, Šulc Petr, Angelini Alessandro
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy.
School of Molecular Sciences and Centre for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States.
ACS Cent Sci. 2024 Nov 20;10(12):2242-2252. doi: 10.1021/acscentsci.4c01428. eCollection 2024 Dec 25.
Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further studies showed that such -evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target. Crystal structure of the cyclic peptides in complex with the protease resembled those of protein complexes, with large interaction surfaces, constrained peptide backbones, and multiple inter- and intramolecular interactions, leading to good binding affinity and selectivity.
使用机器学习模型计算生成环肽抑制剂需要大量通常难以通过实验生成的训练数据集。在这里,我们证明,随机森林回归与伪似然最大化直接耦合分析方法和蒙特卡罗模拟的顺序组合,即使对于小的实验数据集,也能有效增强肿瘤相关蛋白酶环肽抑制剂的设计流程。进一步的研究表明,这种进化后的环肽比先前针对该靶点开发的最佳肽抑制剂更有效。环肽与蛋白酶复合物的晶体结构类似于蛋白质复合物,具有大的相互作用表面、受限的肽主链以及多种分子间和分子内相互作用,从而产生良好的结合亲和力和选择性。