Maurizio Aurora, Tascini Anna Sofia, Morelli Marco J
Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.
Universita'Vita-Salute San Raffaele, Milan 20132, Italy.
Bioinform Adv. 2024 Dec 14;5(1):vbae201. doi: 10.1093/bioadv/vbae201. eCollection 2025.
Proteins at the cell surface connect signaling networks and largely determine a cell's capacity to communicate and interact with its environment. In particular, variations in transcriptomic profiles are often observed between healthy and diseased cells, leading to distinct sets of cell-surface proteins. For these reasons, cell-surface proteins may act as biomarkers for the detection of cells of interest in tissues or body fluids, are often the target of pharmaceutical agents, and hold significant promise in the clinical practice for diagnosis, prognosis, treatment development, and evaluation of therapy response. Therefore, implementing robust methods to identify condition-specific cell-surface proteins is of pivotal importance to advance biomedical research.
We developed SurfR, an R/Bioconductor package providing a streamlined end-to-end workflow for computationally identifying surface protein-coding genes from expression data. Our user-friendly, comprehensive workflow performs systematic expression data retrieval from public databases, differential gene expression across conditions, integration of datasets, enrichment analysis, identification of targetable proteins on a condition of interest, and data visualization.
SurfR is released under GNU-GPL-v3.0 License. Source code, documentation, examples, and tutorials are available through Bioconductor (http://www.bioconductor.org/packages/SurfR). RMD notebooks with the use cases code described in the manuscript can be found on GitHub (https://github.com/auroramaurizio/SurfR_UseCases).
细胞表面的蛋白质连接着信号网络,并在很大程度上决定了细胞与周围环境进行通讯和相互作用的能力。特别是,健康细胞和患病细胞之间经常观察到转录组谱的差异,从而导致不同的细胞表面蛋白质组。基于这些原因,细胞表面蛋白质可能作为检测组织或体液中感兴趣细胞的生物标志物,经常是药物的靶点,并且在临床实践中的诊断、预后、治疗开发和治疗反应评估方面具有重大前景。因此,实施强大的方法来识别特定条件下的细胞表面蛋白质对于推进生物医学研究至关重要。
我们开发了SurfR,这是一个R/Bioconductor软件包,它提供了一个简化的端到端工作流程,用于从表达数据中通过计算识别表面蛋白编码基因。我们用户友好的综合工作流程可从公共数据库中系统地检索表达数据,进行跨条件的差异基因表达分析、数据集整合、富集分析、识别感兴趣条件下的可靶向蛋白质以及数据可视化。
SurfR根据GNU-GPL-v3.0许可发布。源代码、文档、示例和教程可通过Bioconductor(http://www.bioconductor.org/packages/SurfR)获取。包含手稿中所述用例代码的RMD笔记本可在GitHub(https://github.com/auroramaurizio/SurfR_UseCases)上找到。