Suppr超能文献

SPECK:一种用于单细胞RNA测序数据中细胞表面受体丰度估计的无监督学习方法。

SPECK: an unsupervised learning approach for cell surface receptor abundance estimation for single-cell RNA-sequencing data.

作者信息

Javaid Azka, Frost H Robert

机构信息

Department of Biomedical Data Science, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Bioinform Adv. 2023 Jun 13;3(1):vbad073. doi: 10.1093/bioadv/vbad073. eCollection 2023.

Abstract

SUMMARY

The rapid development of single-cell transcriptomics has revolutionized the study of complex tissues. Single-cell RNA-sequencing (scRNA-seq) can profile tens-of-thousands of dissociated cells from a tissue sample, enabling researchers to identify cell types, phenotypes and interactions that control tissue structure and function. A key requirement of these applications is the accurate estimation of cell surface protein abundance. Although technologies to directly quantify surface proteins are available, these data are uncommon and limited to proteins with available antibodies. While supervised methods that are trained on Cellular Indexing of Transcriptomes and Epitopes by Sequencing data can provide the best performance, these training data are limited by available antibodies and may not exist for the tissue under investigation. In the absence of protein measurements, researchers must estimate receptor abundance from scRNA-seq data. Therefore, we developed a new unsupervised method for receptor abundance estimation using scRNA-seq data called SPECK (Surface Protein abundance Estimation using CKmeans-based clustered thresholding) and primarily evaluated its performance against unsupervised approaches for at least 25 human receptors and multiple tissue types. This analysis reveals that techniques based on a thresholded reduced rank reconstruction of scRNA-seq data are effective for receptor abundance estimation, with SPECK providing the best overall performance.

AVAILABILITY AND IMPLEMENTATION

SPECK is freely available at https://CRAN.R-project.org/package=SPECK.

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

摘要

单细胞转录组学的快速发展彻底改变了对复杂组织的研究。单细胞RNA测序(scRNA-seq)能够对来自组织样本的数万个解离细胞进行分析,使研究人员能够识别控制组织结构和功能的细胞类型、表型及相互作用。这些应用的一个关键要求是准确估计细胞表面蛋白丰度。虽然有直接定量表面蛋白的技术,但这些数据并不常见,且仅限于有可用抗体的蛋白质。虽然通过对转录组和表位进行测序数据训练的监督方法可以提供最佳性能,但这些训练数据受到可用抗体的限制,对于所研究的组织可能并不存在。在缺乏蛋白质测量的情况下,研究人员必须从scRNA-seq数据中估计受体丰度。因此,我们开发了一种新的无监督方法,使用scRNA-seq数据估计受体丰度,称为SPECK(基于CKmeans聚类阈值的表面蛋白丰度估计),并主要针对至少25种人类受体和多种组织类型,将其性能与无监督方法进行了评估。该分析表明,基于scRNA-seq数据的阈值化降秩重建技术对于受体丰度估计是有效的,其中SPECK提供了最佳的整体性能。

可用性与实现方式

SPECK可在https://CRAN.R-project.org/package=SPECK上免费获取。

补充信息

补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7918/10290233/544d5a07abf8/vbad073f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验