Suppr超能文献

贵金属纳米点功能化的气致氮化镓和氧化锌微四足体对四环素的增强太阳光光催化降解作用

Enhanced solar light photocatalytic degradation of tetracycline by aero-GaN and ZnO microtetrapods functionalized with noble metal nanodots.

作者信息

Ciobanu Vladimir, Galatonova Tatiana, Urbanek Pavel, Braniste Tudor, Doroftei Florica, Masar Milan, Suly Pavol, Ursaki Veaceslav, Hanulikova Barbora, Sopik Tomas, Sedlarik Vladimir, Kuritka Ivo, Tiginyanu Ion

机构信息

Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.

National Centre for Materials Study and Testing, Technical University of Moldova, 168, Stefan cel Mare av., 2004, Chisinau, Republic of Moldova.

出版信息

Heliyon. 2024 Dec 6;10(24):e40989. doi: 10.1016/j.heliyon.2024.e40989. eCollection 2024 Dec 30.

Abstract

The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability. The higher surface area and chemical stability of the 3D aero-GaN architecture, compared to analogous ZnO structures, establish its significant potential for advanced water treatment applications and filter technologies.

摘要

全球废水中抗生素污染问题日益严重,需要创新且可持续的修复技术。本文介绍了一种用于水净化的高效光催化材料:由相互连接的GaN中空微四足体构成的三维超多孔结构(气凝胶GaN),贵金属纳米点功能化进一步增强了其性能。这种新型气凝胶纳米材料在紫外线和太阳光照射下120分钟内实现了超过90%的四环素降解,证明了其在静态和动态流动条件下的有效性,具有重复使用和可回收的潜力。与类似的ZnO结构相比,三维气凝胶GaN结构具有更高的表面积和化学稳定性,这确立了其在先进水处理应用和过滤技术方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c1/11681869/f8f6df65e64b/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验