Yang Zeyu, Sheehan Alice M, Messer Andrew E, Tsui Sharmane, Sparrow Alexander, Redwood Charles, Kren Vladimir, Gould Ian R, Marston Steven B
Institute of Chemical Biology, Molecular Sciences Research Hub and Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom.
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Front Physiol. 2024 Dec 13;15:1489439. doi: 10.3389/fphys.2024.1489439. eCollection 2024.
Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy). Cardiomyopathy-linked mutations primarily affect Ca regulation or the PKA-dependent modulatory system, such that Ca-sensitivity becomes independent of phosphorylation level (uncoupling) and this could be sufficient to induce cardiomyopathy. A drug that could restore the phosphorylation-dependent modulation of Ca-sensitivity could have potential for treatment of these pathologies. We have found that a number of small molecules, including silybin B, resveratrol and EGCG, can restore coupling in single filament assays.
We did molecular dynamics simulations (5x1500ns for each condition) of the unphosphorylated and phosphorylated cardiac troponin core with the G159D DCM mutation in the presence of the 5 ligands and analysed the effects on several dynamic parameters. We also studied the effect of the ligands on the contractility of cardiac muscle myocytes with ACTC E99K and TNNT2 R92Q mutations in response to dobutamine.
Silybin B, EGCG and resveratrol restored the phosphorylation-induced change in molecular dynamics to wild-type values, whilst silybin A, an inactive isomer of silybin B, and Epicatechin gallate, an EGCG analogue that does not recouple, did not. We analysed the atomic-level changes induced by ligand binding to explain recoupling. Mutations ACTC E99K and TNNT2 R92Q blunt the increased relaxation speed response to β1 adrenergic stimulation of cardiac myocytes and we found that resveratrol, EGCG and silybin B could restore the β1 adrenergic response, whereas silybin A did not.
The uncoupling phenomenon caused by cardiomyopathy-related mutations and the ability of small molecules to restore coupling and lusitropy in myocytes is observed at the cellular, molecular and atomistic levels therefore, restoring lusitropy is a suitable target for treatment. Further research on compounds that restore lusitropy is thus indicated as treatments for genetic cardiomyopathies. Further molecular dynamics simulations could define the specific properties needed for recoupling and allow for the prediction and design of potential new drugs.
心肌中蛋白激酶A(PKA)的肾上腺素能激活作用于肌膜、肌浆网和收缩装置,以增加收缩力和心率。在收缩装置的细肌丝中,心脏特异性N端肽(NcTnI:第1至32位氨基酸残基)中的心肌肌钙蛋白I(cTnI)的Ser22和Ser23是PKA磷酸化的靶点。磷酸化导致cTn对Ca的亲和力降低2 - 3倍,同时Ca从cTnC解离的速率加快,从而使心肌舒张速率加快(舒张性)。与心肌病相关的突变主要影响Ca调节或PKA依赖性调节系统,使得Ca敏感性变得独立于磷酸化水平(解偶联),而这可能足以诱发心肌病。一种能够恢复Ca敏感性的磷酸化依赖性调节的药物可能具有治疗这些疾病的潜力。我们发现,包括水飞蓟宾B、白藜芦醇和表没食子儿茶素没食子酸酯(EGCG)在内的多种小分子能够在单丝试验中恢复偶联。
我们在存在5种配体的情况下,对具有G159D扩张型心肌病(DCM)突变的未磷酸化和磷酸化的心肌肌钙蛋白核心进行了分子动力学模拟(每种条件下5次×1500纳秒),并分析了对几个动力学参数的影响。我们还研究了这些配体对具有ACTC E99K和TNNT2 R92Q突变的心肌细胞对多巴酚丁胺反应的收缩性的影响。
水飞蓟宾B、EGCG和白藜芦醇将磷酸化诱导的分子动力学变化恢复到野生型值,而水飞蓟宾B的无活性异构体水飞蓟宾A以及不能恢复偶联的EGCG类似物表儿茶素没食子酸酯则没有这种作用。我们分析了配体结合引起的原子水平变化以解释偶联恢复。ACTC E99K和TNNT2 R92Q突变减弱了心肌细胞对β1肾上腺素能刺激的舒张速度增加反应,我们发现白藜芦醇、EGCG和水飞蓟宾B能够恢复β1肾上腺素能反应,而水飞蓟宾A则不能。
在细胞、分子和原子水平上均观察到与心肌病相关的突变引起的解偶联现象以及小分子恢复心肌细胞偶联和舒张性的能力,因此,恢复舒张性是一个合适的治疗靶点。因此,对恢复舒张性的化合物进行进一步研究可作为遗传性心肌病的治疗方法。进一步的分子动力学模拟可以确定恢复偶联所需的特定性质,并有助于预测和设计潜在的新药。