Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States.
ACS Nano. 2023 Feb 14;17(3):2124-2133. doi: 10.1021/acsnano.2c08075. Epub 2023 Jan 20.
Regulating cell behavior using nanotopography has been widely implemented. To facilitate cell adhesion, physical nanotopography is usually coated with adhesive proteins such as fibronectin (FN). However, the confounding effects of physical and biochemical cues of nanotopography hinder the understanding of nanotopography in regulating cell behavior, which ultimately limits the biomedical applications of nanotopography. To delineate the roles of the physical and biochemical cues in cell regulation, we fabricate substrates that have either the same physical nanotopography but different biochemical (FN) nanopatterns or identical FN nanopatterns but different physical nanotopographies. We then examine the influences of physical and biochemical cues of nanotopography on spreading, nuclear deformation, mechanotransduction, and function of human mesenchymal stem cells (hMSCs). Our results reveal that physical topographies, especially nanogratings, dominantly control cell spreading, YAP localization, proliferation, and differentiation of hMSCs. However, biochemical FN nanopatterns affect hMSC elongation, YAP intracellular localization, and lamin a/c (LAMAC) expression. Furthermore, we find that physical nanogratings induce nanoscale curvature of nuclei at the basal side, which attenuates the osteogenic differentiation of hMSCs. Collectively, our study highlights the dominant effect of physical nanotopography in regulating stem cell functions, while suggesting that fine-tuning of cell behavior can be achieved through altering the presentation of biochemical cues on substrate surfaces.
利用纳米形貌来调节细胞行为已经得到了广泛的应用。为了促进细胞黏附,物理纳米形貌通常会涂覆黏附蛋白,如纤维连接蛋白(FN)。然而,纳米形貌的物理和生化线索的混杂效应阻碍了对纳米形貌调节细胞行为的理解,这最终限制了纳米形貌的生物医学应用。为了阐明物理和生化线索在细胞调节中的作用,我们制备了具有相同物理纳米形貌但不同生化(FN)纳米图案或相同 FN 纳米图案但不同物理纳米形貌的基底。然后,我们研究了纳米形貌的物理和生化线索对人骨髓间充质干细胞(hMSC)的扩展、核变形、力学转导和功能的影响。我们的结果表明,物理形貌,特别是纳米光栅,主要控制细胞的扩展、YAP 定位、增殖和 hMSC 的分化。然而,生化 FN 纳米图案影响 hMSC 的伸长、YAP 细胞内定位和核纤层蛋白 a/c(LAMAC)的表达。此外,我们发现物理纳米光栅在基底侧诱导核的纳米级曲率,从而减弱 hMSC 的成骨分化。总之,我们的研究强调了物理纳米形貌在调节干细胞功能方面的主导作用,同时表明通过改变基底表面生化线索的呈现方式可以精细调节细胞行为。