Suppr超能文献

人工智能驱动的精准医学:弥漫性大B细胞淋巴瘤(DLBCL)中的多组学和空间多组学方法

Artificial Intelligence-Driven Precision Medicine: Multi-Omics and Spatial Multi-Omics Approaches in Diffuse Large B-Cell Lymphoma (DLBCL).

作者信息

Shao Yanping, Lv Xiuyan, Ying Shuangwei, Guo Qunyi

机构信息

Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.

Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 317000 Taizhou, Zhejiang, China.

出版信息

Front Biosci (Landmark Ed). 2024 Nov 28;29(12):404. doi: 10.31083/j.fbl2912404.

Abstract

In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized the current landscape of multi-omics and spatial multi-omics technologies, accentuating their combined potential with AI to provide unparalleled insights into the molecular intricacies and spatial heterogeneity inherent to DLBCL. Despite current progress, we acknowledge the hurdles that impede the full utilization of these technologies, such as the integration and sophisticated analysis of complex datasets, the necessity for standardized protocols, the reproducibility of findings, and the interpretation of their biological significance. We proceeded to pinpoint crucial research voids and advocated for a trajectory that incorporates the development of advanced AI-driven data integration and analytical frameworks. The evolution of these technologies is crucial for enhancing resolution and depth in multi-omics studies. We also emphasized the importance of amassing extensive, meticulously annotated multi-omics datasets and fostering translational research efforts to connect laboratory discoveries with clinical applications seamlessly. Our review concluded that the synergistic integration of multi-omics, spatial multi-omics, and AI holds immense promise for propelling precision medicine forward in DLBCL. By surmounting the present challenges and steering towards the outlined futuristic pathways, we can harness these potent investigative tools to decipher the molecular and spatial conundrums of DLBCL. This will pave the way for refined diagnostic precision, nuanced risk stratification, and individualized therapeutic regimens, ushering in a new era of patient-centric oncology care.

摘要

在这篇全面综述中,我们深入探讨了人工智能(AI)在优化多组学和空间多组学在弥漫性大B细胞淋巴瘤(DLBCL)研究领域应用中的变革性作用。我们审视了多组学和空间多组学技术的当前格局,强调了它们与AI相结合的潜力,以提供对DLBCL固有的分子复杂性和空间异质性的无与伦比的见解。尽管目前取得了进展,但我们认识到阻碍这些技术充分利用的障碍,例如复杂数据集的整合和精细分析、标准化方案的必要性、研究结果的可重复性以及对其生物学意义的解释。我们进而确定了关键的研究空白,并倡导了一条纳入先进的AI驱动的数据整合和分析框架发展的路径。这些技术的发展对于提高多组学研究的分辨率和深度至关重要。我们还强调了积累大量经过精心注释的多组学数据集以及促进转化研究工作以无缝连接实验室发现与临床应用的重要性。我们的综述得出结论,多组学、空间多组学和AI的协同整合在推动DLBCL的精准医学发展方面具有巨大潜力。通过克服当前的挑战并朝着概述的未来路径前进,我们可以利用这些强大的研究工具来破解DLBCL的分子和空间难题。这将为提高诊断精度、进行细致的风险分层和制定个性化治疗方案铺平道路,开创以患者为中心的肿瘤护理新时代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验