Suppr超能文献

利用人工智能进行多模态组学数据整合:为精准医学的下一个前沿铺平道路。

Harnessing Artificial Intelligence in Multimodal Omics Data Integration: Paving the Path for the Next Frontier in Precision Medicine.

机构信息

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; email:

Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Annu Rev Biomed Data Sci. 2024 Aug;7(1):225-250. doi: 10.1146/annurev-biodatasci-102523-103801. Epub 2024 Jul 24.

Abstract

The integration of multiomics data with detailed phenotypic insights from electronic health records marks a paradigm shift in biomedical research, offering unparalleled holistic views into health and disease pathways. This review delineates the current landscape of multimodal omics data integration, emphasizing its transformative potential in generating a comprehensive understanding of complex biological systems. We explore robust methodologies for data integration, ranging from concatenation-based to transformation-based and network-based strategies, designed to harness the intricate nuances of diverse data types. Our discussion extends from incorporating large-scale population biobanks to dissecting high-dimensional omics layers at the single-cell level. The review underscores the emerging role of large language models in artificial intelligence, anticipating their influence as a near-future pivot in data integration approaches. Highlighting both achievements and hurdles, we advocate for a concerted effort toward sophisticated integration models, fortifying the foundation for groundbreaking discoveries in precision medicine.

摘要

多组学数据与电子健康记录中详细的表型见解的整合标志着生物医学研究的范式转变,为健康和疾病途径提供了无与伦比的整体视角。这篇综述描绘了多模态组学数据整合的当前格局,强调了其在全面理解复杂生物系统方面的变革潜力。我们探索了强大的数据整合方法,包括基于拼接的、基于转换的和基于网络的策略,旨在利用不同数据类型的复杂细微差别。我们的讨论从利用大型人群生物库扩展到在单细胞水平上剖析高维组学层。该综述强调了大型语言模型在人工智能中的新兴作用,预计它们将成为未来数据整合方法的一个重要转折点。我们既强调了成就,也强调了障碍,倡导朝着复杂的整合模型努力,为精准医学的突破性发现奠定基础。

相似文献

引用本文的文献

8
Recent advances in therapeutic probiotics: insights from human trials.治疗性益生菌的最新进展:来自人体试验的见解
Clin Microbiol Rev. 2025 Jun 12;38(2):e0024024. doi: 10.1128/cmr.00240-24. Epub 2025 Apr 22.
10
Mechanisms and technologies in cancer epigenetics.癌症表观遗传学的机制与技术
Front Oncol. 2025 Jan 7;14:1513654. doi: 10.3389/fonc.2024.1513654. eCollection 2024.

本文引用的文献

8
Large language models encode clinical knowledge.大语言模型编码临床知识。
Nature. 2023 Aug;620(7972):172-180. doi: 10.1038/s41586-023-06291-2. Epub 2023 Jul 12.
10
The technological landscape and applications of single-cell multi-omics.单细胞多组学的技术领域和应用。
Nat Rev Mol Cell Biol. 2023 Oct;24(10):695-713. doi: 10.1038/s41580-023-00615-w. Epub 2023 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验