Guo Jin, Feng Pengfei, Xue Han, Xue Sha, Fan Liangxin
School of Business, Henan Normal University, Xinxiang, 453007, China; School of Political Science and Public Administration, Henan Normal University, Xinxiang, 453007, China.
School of Business, Henan Normal University, Xinxiang, 453007, China.
J Environ Manage. 2025 Jan;373:123923. doi: 10.1016/j.jenvman.2024.123923. Epub 2024 Dec 29.
Understanding the establishment of ecological security patterns in arid and semi-arid regions is critical for global ecological risk prevention, control, and sustainable development. Nonetheless, there remains a relative deficiency in ecological risk assessment and construction of Ecological Security Patterns (ESP) in these areas, along with insufficient verification regarding the changes in ecological security patterns under diverse scenarios. This study employs Morphological Spatial Pattern Analysis (MSPA) to identify ecological sources and utilizes circuit theory alongside Minimum Cumulative Resistance (MCR) to delineate ecological corridors. Additionally, the framework integrates the impacts of human activities on ecosystems and accounts for the disparities and uncertainties associated with future scenarios in constructing ESP. Results indicate discrepancies between the least risky pathway (SSP5-8.5) and the most stable pathway (SSP1-2.6) on the Loess Plateau, with varying manifestations of ecological risk. This study identified 28 large-scale ecological sources covering 65,642.745 km, including 10 core sources exceeding 2000 km; delineated 65 ecological corridors totaling 6695.061 km, encompassing 19 core corridors spanning 4091.452 km. The spatial overlap between ecological corridors and high-risk areas presents challenges to constructing ecological security patterns. In consideration of future uncertainties, we propose an ecological pattern optimization strategy incorporating "three barriers, five corridors, three protections, two zones, two belts, and multiple scattered points". This strategy emphasizes the potential of combining primary planting corridors, returning farmland to forests, and planning ecological buffer zones to address ecological risks. The study aims to enhance ecological security levels and readiness to confront ecological challenges in arid and semi-arid regions.
了解干旱和半干旱地区生态安全格局的建立对于全球生态风险预防、控制和可持续发展至关重要。尽管如此,这些地区在生态风险评估和生态安全格局(ESP)构建方面仍相对不足,同时对于不同情景下生态安全格局的变化缺乏充分验证。本研究采用形态学空间格局分析(MSPA)识别生态源,并利用电路理论和最小累积阻力(MCR)划定生态廊道。此外,该框架在构建ESP时整合了人类活动对生态系统的影响,并考虑了与未来情景相关的差异和不确定性。结果表明,黄土高原上风险最小的路径(SSP5-8.5)和最稳定的路径(SSP1-2.6)之间存在差异,生态风险表现各异。本研究识别出28个大规模生态源,面积达65642.745平方千米,其中10个核心源超过2000平方千米;划定了65条生态廊道,总长6695.061千米,包括19条核心廊道,跨度4091.452千米。生态廊道与高风险区域的空间重叠给生态安全格局构建带来挑战。考虑到未来的不确定性,我们提出了一种生态格局优化策略,即“三道屏障、五条廊道、三个保护区、两个区域、两条带和多个散点”。该策略强调了结合主要种植廊道、退耕还林和规划生态缓冲区以应对生态风险的潜力。本研究旨在提高干旱和半干旱地区的生态安全水平以及应对生态挑战的能力。