Ver Hoef Jay M, Blagg Eryn, Dumelle Michael, Dixon Philip M, Zimmerman Dale L, Conn Paul B
Marine Mammal Laboratory, NOAA-NMFS Alaska Fisheries Science Center, Seattle, Washington, USA.
Department of Statistics, Iowa State University, Ames, Iowa, USA.
Environmetrics. 2022 Jul 22;35(7):e2872. doi: 10.1002/env.2872.
We develop hierarchical models and methods in a fully parametric approach to generalized linear mixed models for any patterned covariance matrix. The Laplace approximation is used to marginally estimate covariance parameters by integrating over all fixed and latent random effects. The Laplace approximation relies on Newton-Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. We compare our methods to fully Bayesian methods, automatic differentiation, and integrated nested Laplace approximations (INLA) for bias, mean-squared (prediction) error, and interval coverage, and all methods yield very similar results. However, our methods are much faster than Bayesian methods, and more general than INLA. Examples with binary and proportional data, count data, and positive-continuous data are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (both geostatistical and areal models), time series models, and mixtures with typical random intercepts based on grouping.
我们采用完全参数化方法为具有任何模式协方差矩阵的广义线性混合模型开发分层模型和方法。通过对所有固定和潜在随机效应进行积分,使用拉普拉斯近似来边际估计协方差参数。拉普拉斯近似依赖于牛顿 - 拉夫逊更新,这也会产生对潜在随机效应的预测。我们开发了完整的边际推断方法,从估计协方差参数和固定效应到对未观测数据进行预测。为常用于二元、计数和正连续数据的六种分布开发了边际似然,并且我们的框架可以轻松扩展到其他分布。我们将我们的方法与完全贝叶斯方法、自动微分以及集成嵌套拉普拉斯近似(INLA)在偏差、均方(预测)误差和区间覆盖率方面进行比较,所有方法都产生非常相似的结果。然而,我们的方法比贝叶斯方法快得多,并且比INLA更通用。使用二元和比例数据、计数数据以及正连续数据的示例来说明所有六种分布,以及各种模式协方差结构,包括空间模型(地理统计模型和区域模型)、时间序列模型以及基于分组的具有典型随机截距的混合模型。