Suppr超能文献

一种用于广义线性混合模型的半参数贝叶斯方法。

A semi-parametric Bayesian approach to generalized linear mixed models.

作者信息

Kleinman K P, Ibrahim J G

机构信息

New England Research Institutes, Watertown, MA 02172, USA.

出版信息

Stat Med. 1998 Nov 30;17(22):2579-96. doi: 10.1002/(sici)1097-0258(19981130)17:22<2579::aid-sim948>3.0.co;2-p.

Abstract

The linear mixed effects model with normal errors is a popular model for the analysis of repeated measures and longitudinal data. The generalized linear model is useful for data that have non-normal errors but where the errors are uncorrelated. A descendant of these two models generates a model for correlated data with non-normal errors, called the generalized linear mixed model (GLMM). Frequentist attempts to fit these models generally rely on approximate results and inference relies on asymptotic assumptions. Recent advances in computing technology have made Bayesian approaches to this class of models computationally feasible. Markov chain Monte Carlo methods can be used to obtain 'exact' inference for these models, as demonstrated by Zeger and Karim. In the linear or generalized linear mixed model, the random effects are typically taken to have a fully parametric distribution, such as the normal distribution. In this paper, we extend the GLMM by allowing the random effects to have a non-parametric prior distribution. We do this using a Dirichlet process prior for the general distribution of the random effects. The approach easily extends to more general population models. We perform computations for the models using the Gibbs sampler.

摘要

具有正态误差的线性混合效应模型是用于分析重复测量数据和纵向数据的常用模型。广义线性模型适用于具有非正态误差但误差不相关的数据。这两种模型的一个衍生模型产生了一个用于具有非正态误差的相关数据的模型,称为广义线性混合模型(GLMM)。频率主义者拟合这些模型的尝试通常依赖于近似结果,并且推断依赖于渐近假设。计算技术的最新进展使得贝叶斯方法对于这类模型在计算上可行。马尔可夫链蒙特卡罗方法可用于获得这些模型的“精确”推断,正如泽格和卡里姆所证明的那样。在线性或广义线性混合模型中,随机效应通常被认为具有完全参数化的分布,例如正态分布。在本文中,我们通过允许随机效应具有非参数先验分布来扩展广义线性混合模型。我们使用狄利克雷过程先验来处理随机效应的一般分布。该方法很容易扩展到更一般的总体模型。我们使用吉布斯采样器对模型进行计算。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验