Suppr超能文献

纵向数据模型:一种广义估计方程方法。

Models for longitudinal data: a generalized estimating equation approach.

作者信息

Zeger S L, Liang K Y, Albert P S

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205.

出版信息

Biometrics. 1988 Dec;44(4):1049-60.

PMID:3233245
Abstract

This article discusses extensions of generalized linear models for the analysis of longitudinal data. Two approaches are considered: subject-specific (SS) models in which heterogeneity in regression parameters is explicitly modelled; and population-averaged (PA) models in which the aggregate response for the population is the focus. We use a generalized estimating equation approach to fit both classes of models for discrete and continuous outcomes. When the subject-specific parameters are assumed to follow a Gaussian distribution, simple relationships between the PA and SS parameters are available. The methods are illustrated with an analysis of data on mother's smoking and children's respiratory disease.

摘要

本文讨论了用于纵向数据分析的广义线性模型的扩展。考虑了两种方法:特定个体(SS)模型,其中回归参数的异质性被明确建模;以及总体平均(PA)模型,其中总体的总体反应是重点。我们使用广义估计方程方法来拟合这两类模型,用于离散和连续结果。当假设特定个体参数服从高斯分布时,PA和SS参数之间存在简单的关系。通过对母亲吸烟与儿童呼吸系统疾病数据的分析来说明这些方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验