Xue Feng, Ragno Martina, Blackburn Sarah A, Fasseas Michael, Maitra Sushmita, Liang Mingzhi, Rai Subash, Mastroianni Giulia, Tholozan Frederique, Thompson Rachel, Sellars Laura, Hall Rebecca, Saunter Chris, Weinkove David, Ezcurra Marina
School of Biosciences, University of Kent, Canterbury, United Kingdom.
Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom.
Front Cell Infect Microbiol. 2024 Dec 16;14:1478881. doi: 10.3389/fcimb.2024.1478881. eCollection 2024.
Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity. A major barrier to developing new antimicrobials is the lack of biofilm models. Standard microbiological testing is usually performed using planktonic bacteria, without representation of biofilms, reducing translatability. Here we develop tools to study both infection and biofilm formation by to accelerate development of strategies targeting infection and pathogenic biofilms.
Biofilms were quantified in vitro using Crystal Violet staining and fluorescence biofilm assays. For in vivo assays, were infected with strains. Pathogenicity was quantified by measuring healthspan, survival and GFP fluorescence. Healthspan assays were performed using the WormGazerTM automated imaging technology.
Using the nematode and reporters combined with imaging we show that fluorescent P. aeruginosa reporters that form biofilms can be used to visualize tissue infection. Using automated tracking of movement, we find that that the timing of this infection corresponds with a decline in health endpoints. In a mutant strain of P. aeruginosa lacking RhlR, a transcription factor that controls quorum sensing and biofilm formation, we find reduced capacity of P. aeruginosa to form biofilms, invade host tissues and negatively impact healthspan and survival.
Our findings suggest that RhlR could be a new antimicrobial target to reduce biofilms and virulence in vivo and could be used to more effectively screen for new drugs to combat antimicrobial resistance.
抗生素耐药性是一个日益严重的健康问题。铜绿假单胞菌是一个主要关注的病原体,因为它具有多重耐药性且构成全球威胁,尤其是在医疗环境中。其发病机制和耐药性取决于形成生物膜的能力,由于生物膜可抵御抗生素和宿主免疫,使得感染变为慢性且难以治疗。开发新型抗菌药物的一个主要障碍是缺乏生物膜模型。标准微生物检测通常使用浮游细菌进行,未体现生物膜情况,降低了可转化性。在此,我们开发工具来研究铜绿假单胞菌的感染和生物膜形成,以加速针对感染和致病性生物膜的策略开发。
使用结晶紫染色和荧光生物膜测定法在体外对生物膜进行定量。对于体内测定,秀丽隐杆线虫感染铜绿假单胞菌菌株。通过测量健康寿命、存活率和绿色荧光蛋白(GFP)荧光来量化致病性。使用WormGazerTM自动成像技术进行健康寿命测定。
利用线虫秀丽隐杆线虫和报告基因结合成像,我们表明形成生物膜的荧光铜绿假单胞菌报告基因可用于可视化组织感染。通过自动跟踪秀丽隐杆线虫的运动,我们发现这种感染的时间与健康指标的下降相对应。在缺乏控制群体感应和生物膜形成的转录因子RhlR的铜绿假单胞菌突变株中,我们发现铜绿假单胞菌形成生物膜、侵入宿主组织以及对健康寿命和存活率产生负面影响的能力降低。
我们的研究结果表明,RhlR可能是一个新的抗菌靶点,可在体内减少铜绿假单胞菌生物膜和毒力,秀丽隐杆线虫可用于更有效地筛选对抗抗生素耐药性的新药。