Li Tianchun, Zhu Wanting, Xia Wenke, Wang Li, Li Weiqi, Zhang Peiming
School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
Henan Center for Drug Evaluation and Inspection, Zhengzhou, Henan, China.
Front Comput Neurosci. 2024 Dec 16;18:1476164. doi: 10.3389/fncom.2024.1476164. eCollection 2024.
This study aims to enhance the classification accuracy of adverse events associated with the da Vinci surgical robot through advanced natural language processing techniques, thereby ensuring medical device safety and protecting patient health. Addressing the issues of incomplete and inconsistent adverse event records, we employed a deep learning model that combines BERT and BiLSTM to predict whether adverse event reports resulted in patient harm. We developed the Bert-BiLSTM-Att_dropout model specifically for text classification tasks with small datasets, optimizing the model's generalization ability and key information capture through the integration of dropout and attention mechanisms. Our model demonstrated exceptional performance on a dataset comprising 4,568 da Vinci surgical robot adverse event reports collected from 2013 to 2023, achieving an average F1 score of 90.15%, significantly surpassing baseline models such as GRU, LSTM, BiLSTM-Attention, and BERT. This achievement not only validates the model's effectiveness in text classification within this specific domain but also substantially improves the usability and accuracy of adverse event reporting, contributing to the prevention of medical incidents and reduction of patient harm. Furthermore, our research experimentally confirmed the model's performance, alleviating the data classification and analysis burden for healthcare professionals. Through comparative analysis, we highlighted the potential of combining BERT and BiLSTM in text classification tasks, particularly for small datasets in the medical field. Our findings advance the development of adverse event monitoring technologies for medical devices and provide critical insights for future research and enhancements.
本研究旨在通过先进的自然语言处理技术提高与达芬奇手术机器人相关不良事件的分类准确性,从而确保医疗设备安全并保护患者健康。针对不良事件记录不完整和不一致的问题,我们采用了一种结合BERT和BiLSTM的深度学习模型来预测不良事件报告是否导致患者伤害。我们专门为小数据集的文本分类任务开发了Bert-BiLSTM-Att_dropout模型,通过集成随机失活和注意力机制来优化模型的泛化能力和关键信息捕获能力。我们的模型在一个包含2013年至2023年收集的4568份达芬奇手术机器人不良事件报告的数据集上表现出色,平均F1分数达到90.15%,显著超过了GRU、LSTM、BiLSTM-Attention和BERT等基线模型。这一成果不仅验证了该模型在这一特定领域文本分类中的有效性,还大幅提高了不良事件报告的可用性和准确性,有助于预防医疗事故和减少患者伤害。此外,我们的研究通过实验证实了该模型的性能,减轻了医疗保健专业人员的数据分类和分析负担。通过比较分析,我们突出了BERT和BiLSTM在文本分类任务中的结合潜力,特别是对于医学领域的小数据集。我们的研究结果推动了医疗设备不良事件监测技术的发展,并为未来的研究和改进提供了关键见解。