Suppr超能文献

通过视觉直接感知情感效价。

Direct perception of affective valence from vision.

作者信息

Sadeghi Saeedeh, Gu Zijin, De Rosa Eve, Kuceyeski Amy, Anderson Adam K

机构信息

Department of Psychology, Cornell University, Ithaca, NY, USA.

Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.

出版信息

Nat Commun. 2024 Dec 30;15(1):10735. doi: 10.1038/s41467-024-53668-6.

Abstract

Subjective feelings are thought to arise from conceptual and bodily states. We examine whether the valence of feelings may also be decoded directly from objective ecological statistics of the visual environment. We train a visual valence (VV) machine learning model of low-level image statistics on nearly 8000 emotionally charged photographs. The VV model predicts human valence ratings of images and transfers even more robustly to abstract paintings. In human observers, limiting conceptual analysis of images enhances VV contributions to valence experience, increasing correspondence with machine perception of valence. In the brain, VV resides in lower to mid-level visual regions, where neural activity submitted to deep generative networks synthesizes new images containing positive versus negative VV. There are distinct modes of valence experience, one derived indirectly from meaning, and the other embedded in ecological statistics, affording direct perception of subjective valence as an apparent objective property of the external world.

摘要

主观感受被认为源于概念和身体状态。我们研究了情感的效价是否也可以直接从视觉环境的客观生态统计数据中解码出来。我们在近8000张带有情感色彩的照片上训练了一个基于低级图像统计数据的视觉效价(VV)机器学习模型。该VV模型能够预测人类对图像的效价值评级,并且在抽象绘画上的迁移效果更强。在人类观察者中,限制对图像的概念分析会增强VV对效价体验的贡献,增加与机器效价感知的对应性。在大脑中,VV位于较低到中级的视觉区域,在这些区域,提交给深度生成网络的神经活动会合成包含正性与负性VV的新图像。存在不同的效价体验模式,一种间接源于意义,另一种则嵌入在生态统计数据中,使得对主观效价的直接感知成为外部世界一种明显的客观属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d12/11686310/16986c0310ed/41467_2024_53668_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验