Cahn Jonathan, Regulski Michael, Lynn Jason, Ernst Evan, de Santis Alves Cristiane, Ramakrishnan Srividya, Chougule Kapeel, Wei Sharon, Lu Zhenyuan, Xu Xiaosa, Ramu Umamaheswari, Drenkow Jorg, Kramer Melissa, Seetharam Arun, Hufford Matthew B, McCombie W Richard, Ware Doreen, Jackson David, Schatz Michael C, Gingeras Thomas R, Martienssen Robert A
Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
Nat Commun. 2024 Dec 30;15(1):10854. doi: 10.1038/s41467-024-55195-w.
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp. mexicana), yielding increased kernel row number, loss of the hard fruit case and dissociation from the cob upon maturity, as well as fewer tillers. Molecular approaches have identified transcription factors controlling these traits, yet revealed that a complex regulatory network is at play. MaizeCODE deploys ENCODE strategies to catalog regulatory regions in the maize genome, generating histone modification and transcription factor ChIP-seq in parallel with transcriptomics datasets in 5 tissues of 3 inbred lines which span the phenotypic diversity of maize, as well as the teosinte inbred TIL11. Transcriptomic analysis reveals that pollen grains share features with endosperm, and express dozens of "proto-miRNAs" potential vestiges of gene drive and hybrid incompatibility. Integrated analysis with chromatin modifications results in the identification of a comprehensive set of regulatory regions in each tissue of each inbred, and notably of distal enhancers expressing non-coding enhancer RNAs bi-directionally, reminiscent of "super enhancers" in animal genomes. Furthermore, the morphological traits selected during domestication are recapitulated, both in gene expression and within regulatory regions containing enhancer RNAs, while highlighting the conflict between enhancer activity and silencing of the neighboring transposable elements.
现代玉米(玉米属玉米亚种)由小颖大刍草(玉米属小颖大刍草亚种)驯化而来,随后又渗入了墨西哥大刍草(玉米属墨西哥大刍草亚种)的基因,从而增加了籽粒行数,失去了坚硬的颖壳,并在成熟时与穗轴分离,分蘖也减少了。分子生物学方法已经鉴定出控制这些性状的转录因子,但也揭示了一个复杂的调控网络在起作用。玉米编码计划(MaizeCODE)采用了DNA元件百科全书(ENCODE)计划的策略来编目玉米基因组中的调控区域,在三个自交系的五个组织中同时生成组蛋白修饰和转录因子的染色质免疫沉淀测序(ChIP-seq)数据以及转录组数据集,这些自交系涵盖了玉米的表型多样性,还包括大刍草自交系TIL11。转录组分析表明,花粉粒与胚乳具有共同特征,并表达了数十种“原始微小RNA”,它们可能是基因驱动和杂种不亲和性的潜在遗迹。与染色质修饰的综合分析使得在每个自交系的每个组织中鉴定出了一套全面的调控区域,特别是双向表达非编码增强子RNA的远端增强子,这让人联想到动物基因组中的“超级增强子”。此外,在基因表达以及含有增强子RNA的调控区域内,都重现了驯化过程中选择的形态特征,同时也突出了增强子活性与相邻转座元件沉默之间的冲突。