Suppr超能文献

基因表达和表达数量性状位点分析揭示了现代玉米育种过程中重要农艺性状改良的自然变异基础。

Gene expression and expression quantitative trait loci analyses uncover natural variations underlying the improvement of important agronomic traits during modern maize breeding.

机构信息

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China.

出版信息

Plant J. 2023 Aug;115(3):772-787. doi: 10.1111/tpj.16260. Epub 2023 May 20.

Abstract

Maize (Zea mays L.) is a major staple crop worldwide, and during modern maize breeding, cultivars with increased tolerance to high-density planting and higher yield per plant have contributed significantly to the increased yield per unit land area. Systematically identifying key agronomic traits and their associated genomic changes during modern maize breeding remains a significant challenge because of the complexity of genetic regulation and the interactions of the various agronomic traits, with most of them being controlled by numerous small-effect quantitative trait loci (QTLs). Here, we performed phenotypic and gene expression analyses for a set of 137 elite inbred lines of maize from different breeding eras in China. We found four yield-related traits are significantly improved during modern maize breeding. Through gene-clustering analyses, we identified four groups of expressed genes with distinct trends of expression pattern change across the historical breeding eras. In combination with weighted gene co-expression network analysis, we identified several candidate genes regulating various plant architecture- and yield-related agronomic traits, such as ZmARF16, ZmARF34, ZmTCP40, ZmPIN7, ZmPYL10, ZmJMJ10, ZmARF1, ZmSWEET15b, ZmGLN6 and Zm00001d019150. Further, by combining expression quantitative trait loci (eQTLs) analyses, correlation coefficient analyses and population genetics, we identified a set of candidate genes that might have been under selection and contributed to the genetic improvement of various agronomic traits during modern maize breeding, including a number of known key regulators of plant architecture, flowering time and yield-related traits, such as ZmPIF3.3, ZAG1, ZFL2 and ZmBES1. Lastly, we validated the functional variations in GL15, ZmPHYB2 and ZmPYL10 that influence kernel row number, flowering time, plant height and ear height, respectively. Our results demonstrates the effectiveness of our combined approaches for uncovering key candidate regulatory genes and functional variation underlying the improvement of important agronomic traits during modern maize breeding, and provide a valuable genetic resource for the molecular breeding of maize cultivars with tolerance for high-density planting.

摘要

玉米(Zea mays L.)是世界范围内的主要主食作物,在现代玉米育种中,具有更高的高密度种植耐受性和每株更高产量的品种显著提高了单位土地面积的产量。由于遗传调控的复杂性和各种农艺性状的相互作用,系统地鉴定现代玉米育种过程中的关键农艺性状及其相关基因组变化仍然是一个重大挑战,其中大多数性状由许多小效应数量性状位点(QTL)控制。在这里,我们对来自中国不同育种时代的 137 个玉米优良自交系进行了表型和基因表达分析。我们发现,在现代玉米育种过程中,有四个与产量相关的性状得到了显著改善。通过基因聚类分析,我们确定了四个表达基因组,它们在历史育种时代的表达模式变化趋势明显不同。结合加权基因共表达网络分析,我们鉴定了几个候选基因,这些基因调节各种与植物结构和产量相关的农艺性状,如 ZmARF16、ZmARF34、ZmTCP40、ZmPIN7、ZmPYL10、ZmJMJ10、ZmARF1、ZmSWEET15b、ZmGLN6 和 Zm00001d019150。此外,通过结合表达数量性状位点(eQTLs)分析、相关系数分析和群体遗传学,我们鉴定了一组候选基因,这些基因可能在选择过程中发挥作用,并有助于现代玉米育种过程中各种农艺性状的遗传改良,包括一些已知的植物结构、开花时间和产量相关性状的关键调控因子,如 ZmPIF3.3、ZAG1、ZFL2 和 ZmBES1。最后,我们验证了 GL15、ZmPHYB2 和 ZmPYL10 中的功能变异,它们分别影响籽粒行数、开花时间、株高和穗高。我们的研究结果表明,我们的综合方法对于揭示现代玉米育种过程中重要农艺性状改良的关键候选调控基因和功能变异是有效的,并为具有高密度种植耐受性的玉米品种的分子育种提供了有价值的遗传资源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验