调控钙诱发神经递质释放多种动力学的最小突触前蛋白机制。
Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release.
作者信息
Bose Dipayan, Bera Manindra, Norman Christopher A, Timofeeva Yulia, Volynski Kirill E, Krishnakumar Shyam S
机构信息
Nanobiology Institute, Yale University, West Haven, CT, USA.
Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.
出版信息
Nat Commun. 2024 Dec 30;15(1):10741. doi: 10.1038/s41467-024-54960-1.
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon calcium activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of calcium-triggered fusion clamp reversal, govern the overall kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal calcium concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the calcium-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
神经递质会响应突触前钙内流而从突触小泡中以极高的精度释放,但基于近期的活动历史,其胞吐作用的时间和效率存在显著的异质性。这种异质性对大脑中的信息传递至关重要,但其分子基础仍知之甚少。在这里,我们在生理相关条件下采用生化定义的融合测定法,以描绘出足以解释钙触发的囊泡融合动力学的各种模式的最小蛋白质机制。我们发现,突触结合蛋白-1、突触结合蛋白-7和结合蛋白协同抑制SNARE复合体组装,从而使囊泡在静息状态下保持稳定停靠。钙激活后,突触结合蛋白-1诱导快速囊泡融合,而突触结合蛋白-7介导延迟融合。突触结合蛋白-1和突触结合蛋白-7与相同SNAREs的竞争性结合,再加上钙触发的融合钳反转的不同速率,决定了囊泡融合的整体动力学。在模拟持续神经元活动的条件下,突触结合蛋白-7融合钳因基础钙浓度升高而不稳定,从而增强了融合的同步成分。这些发现直接证明,一小部分蛋白质足以解释神经末梢如何适应和调节钙诱发的神经递质胞吐过程,以支持它们在神经系统中的特殊功能。