文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Communication between DNA polymerases and Replication Protein A within the archaeal replisome.

作者信息

Martínez-Carranza Markel, Vialle Léa, Madru Clément, Cordier Florence, Tekpinar Ayten Dizkirici, Haouz Ahmed, Legrand Pierre, Le Meur Rémy A, England Patrick, Dulermo Rémi, Guijarro J Iñaki, Henneke Ghislaine, Sauguet Ludovic

机构信息

Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France.

Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), Plouzané, France.

出版信息

Nat Commun. 2024 Dec 30;15(1):10926. doi: 10.1038/s41467-024-55365-w.


DOI:10.1038/s41467-024-55365-w
PMID:39738083
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11686378/
Abstract

Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site. Finally, RPA is shown to stimulate the activity of PriSL in a WH-dependent manner. This study provides a molecular understanding of the WH-mediated regulatory activity in central replication factors such as RPA, which regulate genome maintenance in Archaea and Eukaryotes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/3b1a52374591/41467_2024_55365_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/8cb7b636b4a4/41467_2024_55365_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/a2ba078bb5bc/41467_2024_55365_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/3e59ec40cb23/41467_2024_55365_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/3c51e96ea940/41467_2024_55365_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/fa19e512c22a/41467_2024_55365_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/533d85377dc0/41467_2024_55365_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/be29f21b019d/41467_2024_55365_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/3b1a52374591/41467_2024_55365_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/8cb7b636b4a4/41467_2024_55365_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/a2ba078bb5bc/41467_2024_55365_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/3e59ec40cb23/41467_2024_55365_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/3c51e96ea940/41467_2024_55365_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/fa19e512c22a/41467_2024_55365_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/533d85377dc0/41467_2024_55365_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/be29f21b019d/41467_2024_55365_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/11686378/3b1a52374591/41467_2024_55365_Fig8_HTML.jpg

相似文献

[1]
Communication between DNA polymerases and Replication Protein A within the archaeal replisome.

Nat Commun. 2024-12-30

[2]
Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis.

Biosci Biotechnol Biochem. 2019-4

[3]
Structural basis for the increased processivity of D-family DNA polymerases in complex with PCNA.

Nat Commun. 2020-3-27

[4]
Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases.

Nucleic Acids Res. 2020-12-2

[5]
Molecular basis for PrimPol recruitment to replication forks by RPA.

Nat Commun. 2017-5-23

[6]
Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy.

BMC Biol. 2020-10-28

[7]
Characterization of a coupled DNA replication and translesion synthesis polymerase supraholoenzyme from archaea.

Nucleic Acids Res. 2017-8-21

[8]
Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme.

Nat Commun. 2017-5-2

[9]
Structure and function of the primase domain of the replication protein from the archaeal plasmid pRN1.

Biochem Soc Trans. 2011-1

[10]
A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity.

EMBO J. 2003-5-15

本文引用的文献

[1]
Mechanism of single-stranded DNA annealing by RAD52-RPA complex.

Nature. 2024-5

[2]
Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases.

Nat Commun. 2023-12-14

[3]
UCSF ChimeraX: Tools for structure building and analysis.

Protein Sci. 2023-11

[4]
Distinct RPA functions promote eukaryotic DNA replication initiation and elongation.

Nucleic Acids Res. 2023-10-27

[5]
CST-Polα/Primase: the second telomere maintenance machine.

Genes Dev. 2023-7-1

[6]
Mechanism of primer synthesis by Primase-Polymerases.

Curr Opin Struct Biol. 2023-10

[7]
ssDNA accessibility of Rad51 is regulated by orchestrating multiple RPA dynamics.

Nat Commun. 2023-6-30

[8]
DNA-binding mechanism and evolution of replication protein A.

Nat Commun. 2023-4-22

[9]
Structures of the human CST-Polα-primase complex bound to telomere templates.

Nature. 2022-8

[10]
Cryo-EM structure of the human CST-Polα/primase complex in a recruitment state.

Nat Struct Mol Biol. 2022-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索