Suppr超能文献

一种基于深度迁移学习的卷积神经网络框架,用于利用人体服装图像进行气温分类。

A deep transfer learning based convolution neural network framework for air temperature classification using human clothing images.

作者信息

Ahmed Maqsood, Zhang Xiang, Shen Yonglin, Ali Nafees, Flah Aymen, Kanan Mohammad, Alsharef Mohammad, Ghoneim Sherif S M

机构信息

School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.

National Engineering Research Center of Geographic Information System, China University of Geosciences, Wuhan, 430074, China.

出版信息

Sci Rep. 2024 Dec 30;14(1):31658. doi: 10.1038/s41598-024-80657-y.

Abstract

Weather recognition is crucial due to its significant impact on various aspects of daily life, such as weather prediction, environmental monitoring, tourism, and energy production. Several studies have already conducted research on image-based weather recognition. However, previous studies have addressed few types of weather phenomena recognition from images with insufficient accuracy. In this paper, we propose a transfer learning CNN framework for classifying air temperature levels from human clothing images. The framework incorporates various deep transfer learning approaches, including DeepLabV3 Plus for semantic segmentation and others for classification such as BigTransfer (BiT), Vision Transformer (ViT), ResNet101, VGG16, VGG19, and DenseNet121. Meanwhile, we have collected a dataset called the Human Clothing Image Dataset (HCID), consisting of 10,000 images with two categories (High and Low air temperature). All the models were evaluated using various classification metrics, such as the confusion matrix, loss, precision, F1-score, recall, accuracy, and AUC-ROC. Additionally, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) to emphasize significant features and regions identified by models during the classification process. The results show that DenseNet121 outperformed other models with an accuracy of 98.13%. Promising experimental results highlight the potential benefits of the proposed framework for detecting air temperature levels, aiding in weather prediction and environmental monitoring.

摘要

天气识别至关重要,因为它对日常生活的各个方面都有重大影响,例如天气预报、环境监测、旅游业和能源生产。已有多项研究对基于图像的天气识别进行了探索。然而,以往的研究涉及的图像天气现象识别类型较少,且准确率不足。在本文中,我们提出了一种用于从人类服装图像中分类气温水平的迁移学习卷积神经网络(CNN)框架。该框架融合了多种深度迁移学习方法,包括用于语义分割的DeepLabV3 Plus以及用于分类的其他方法,如BigTransfer(BiT)、视觉Transformer(ViT)、ResNet101、VGG16、VGG19和DenseNet121。同时,我们收集了一个名为人类服装图像数据集(HCID)的数据集,它由10000张图像组成,分为两类(高气温和低气温)。所有模型均使用各种分类指标进行评估,如混淆矩阵、损失、精度、F1分数、召回率、准确率和AUC-ROC。此外,我们应用梯度加权类激活映射(Grad-CAM)来突出模型在分类过程中识别出的重要特征和区域。结果表明,DenseNet121的表现优于其他模型,准确率达到98.13%。有前景的实验结果凸显了所提出框架在检测气温水平、辅助天气预报和环境监测方面的潜在益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a1/11685903/665735d02305/41598_2024_80657_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验