Suppr超能文献

新出现的主要严重急性呼吸综合征冠状病毒2变体

Emerging dominant SARS-CoV-2 variants.

作者信息

Chen Jiahui, Wang Rui, Hozumi Yuta, Liu Gengzhuo, Qiu Yuchi, Wei Xiaoqi, Wei Guo-Wei

机构信息

Department of Mathematics, Michigan State University, MI 48824, USA.

Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA.

出版信息

ArXiv. 2022 Oct 18:arXiv:2210.09485v1.

Abstract

Accurate and reliable forecasting of emerging dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants enables policymakers and vaccine makers to get prepared for future waves of infections. The last three waves of SARS-CoV-2 infections caused by dominant variants Omicron (BA.1), BA.2, and BA.4/BA.5 were accurately foretold by our artificial intelligence (AI) models built with biophysics, genotyping of viral genomes, experimental data, algebraic topology, and deep learning. Based on newly available experimental data, we analyzed the impacts of all possible viral spike (S) protein receptor-binding domain (RBD) mutations on the SARS-CoV-2 infectivity. Our analysis sheds light on viral evolutionary mechanisms, i.e., natural selection through infectivity strengthening and antibody resistance. We forecast that BA.2.10.4, BA.2.75, BQ.1.1, and particularly, BA.2.75+R346T, have high potential to become new dominant variants to drive the next surge.

摘要

准确可靠地预测新兴的主要严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变种,能够使政策制定者和疫苗制造商为未来的感染浪潮做好准备。由主要变种奥密克戎(BA.1)、BA.2以及BA.4/BA.5引发的最近三轮SARS-CoV-2感染,都被我们基于生物物理学、病毒基因组基因分型、实验数据、代数拓扑学和深度学习构建的人工智能(AI)模型准确预测到了。基于最新可得的实验数据,我们分析了所有可能的病毒刺突(S)蛋白受体结合域(RBD)突变对SARS-CoV-2传染性的影响。我们的分析揭示了病毒的进化机制,即通过增强传染性和抗体抗性进行自然选择。我们预测,BA.2.10.4、BA.2.75、BQ.1.1,特别是BA.2.75+R346T,极有可能成为推动下一波疫情高峰的新的主要变种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec22/9603820/b3a16126f707/nihpp-2210.09485v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验