Suppr超能文献

纵向磁共振成像中脑转移瘤的自动检测与多成分分割

Automatic detection and multi-component segmentation of brain metastases in longitudinal MRI.

作者信息

Andrearczyk Vincent, Schiappacasse Luis, Abler Daniel, Wodzinski Marek, Hottinger Andreas, Raccaud Matthieu, Bourhis Jean, Prior John O, Dunet Vincent, Depeurnge Adrien

机构信息

Institute of Informatics, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland.

Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.

出版信息

Sci Rep. 2024 Dec 30;14(1):31603. doi: 10.1038/s41598-024-78865-7.

Abstract

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs. It focuses on several important aspects: identifying and segmenting new lesions for screening and treatment planning, re-segmenting lesions in successive images using prior lesion locations as an additional input channel, and performing multi-component segmentation to distinguish between enhancing tissue, edema, and necrosis. The key component of the proposed approach is to propagate the lesion mask from the previous time point to improve the detection performance, which we refer to as "re-segmentation". The retrospective data includes 518 metastases in 184 contrast-enhanced T1-weighted MRIs originating from 49 patients (63% male, 37% female). 131 time-points (36 patients, 418 BMs) are used for cross-validation, the remaining 53 time-points (13 patients, 100 BMs) are used for testing. The lesions were manually delineated with label 1: enhancing lesion, label 2: edema, and label 3: necrosis. One-tailed t-tests are used to compare model performance including multiple segmentation and detection metrics. Significance is considered as p < 0.05. A Dice Similarity Coefficient (DSC) of 0.79 and -score of 0.80 are obtained for the segmentation of new lesions. On follow-up scans, the re-segmentation model significantly outperforms the segmentation model (DSC and 0.78 and 0.88 vs 0.56 and 0.60). The re-segmentation model also significantly outperforms the simple segmentation model on the enhancing lesion (DSC 0.76 vs 0.53) and edema (0.52 vs 0.47) components, while similar scores are obtained on the necrosis component (0.62 vs 0.63). Additionally, we analyze the correlation between lesion size and segmentation performance, as demonstrated in various studies that highlight the challenges in segmenting small lesions. Our findings indicate that this correlation disappears when utilizing the re-segmentation approach and evaluating with the unbiased normalized DSC. In conclusion, the automated segmentation of new lesions and subsequent re-segmentation in follow-up images was achievable, with high level of performance obtained for single- and multiple-component segmentation tasks.

摘要

放疗计划和随访所需的病变手动分割既耗时又容易出错。自动检测和分割可以协助放射科医生完成这些任务。这项工作探索了纵向磁共振成像(MRI)中脑转移瘤(BMs)的自动检测和分割。它关注几个重要方面:识别和分割新病变以进行筛查和治疗计划,利用先前病变位置作为额外输入通道在连续图像中重新分割病变,以及进行多成分分割以区分强化组织、水肿和坏死。所提出方法的关键组件是从前一个时间点传播病变掩码以提高检测性能,我们将其称为“重新分割”。回顾性数据包括来自49名患者(63%为男性,37%为女性)的184幅对比增强T1加权MRI中的518个转移瘤。131个时间点(36名患者,418个BMs)用于交叉验证,其余53个时间点(13名患者,100个BMs)用于测试。病变用标签1手动勾勒:强化病变,标签2:水肿,标签3:坏死。使用单尾t检验比较模型性能,包括多个分割和检测指标。显著性被认为是p < 0.05。新病变分割的骰子相似系数(DSC)为0.79,得分 为0.80。在随访扫描中,重新分割模型明显优于分割模型(DSC和 分别为0.78和0.88,而分割模型为0.56和0.60)。重新分割模型在强化病变(DSC为0.76,而分割模型为0.53)和水肿(0.52对0.47)成分上也明显优于简单分割模型,而在坏死成分上得分相似(0.62对0.63)。此外,我们分析了病变大小与分割性能之间的相关性,正如各种研究所表明的,这些研究突出了分割小病变的挑战。我们的研究结果表明,当使用重新分割方法并以无偏归一化DSC进行评估时,这种相关性消失。总之,新病变的自动分割以及后续随访图像中的重新分割是可以实现的,在单成分和多成分分割任务中都获得了较高的性能水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04d8/11686181/e2199066aaae/41598_2024_78865_Fig1_HTML.jpg

相似文献

1
Automatic detection and multi-component segmentation of brain metastases in longitudinal MRI.
Sci Rep. 2024 Dec 30;14(1):31603. doi: 10.1038/s41598-024-78865-7.
4
Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation.
Eur Radiol. 2023 Oct;33(10):6648-6658. doi: 10.1007/s00330-023-09648-3. Epub 2023 Apr 25.
5
Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
Eur Radiol. 2020 Feb;30(2):823-832. doi: 10.1007/s00330-019-06441-z. Epub 2019 Oct 24.
7
Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
J Magn Reson Imaging. 2020 Jan;51(1):175-182. doi: 10.1002/jmri.26766. Epub 2019 May 2.
9
MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases.
Eur Radiol. 2023 May;33(5):3521-3531. doi: 10.1007/s00330-023-09420-7. Epub 2023 Jan 25.

引用本文的文献

1
The value of AI for assessing longitudinal brain metastases treatment response.
Neurooncol Adv. 2025 Jan 10;7(1):vdae216. doi: 10.1093/noajnl/vdae216. eCollection 2025 Jan-Dec.

本文引用的文献

1
Metrics reloaded: recommendations for image analysis validation.
Nat Methods. 2024 Feb;21(2):195-212. doi: 10.1038/s41592-023-02151-z. Epub 2024 Feb 12.
2
Brain metastasis tumor segmentation and detection using deep learning algorithms: A systematic review and meta-analysis.
Radiother Oncol. 2024 Jan;190:110007. doi: 10.1016/j.radonc.2023.110007. Epub 2023 Nov 13.
3
2.5D and 3D segmentation of brain metastases with deep learning on multinational MRI data.
Front Neuroinform. 2023 Jan 18;16:1056068. doi: 10.3389/fninf.2022.1056068. eCollection 2022.
4
Automated Brain Metastases Segmentation With a Deep Dive Into False-positive Detection.
Adv Radiat Oncol. 2022 Sep 28;8(1):101085. doi: 10.1016/j.adro.2022.101085. eCollection 2023 Jan-Feb.
5
Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review.
Neuroradiology. 2022 Nov;64(11):2103-2117. doi: 10.1007/s00234-022-03019-3. Epub 2022 Jul 22.
6
Deep learning for brain metastasis detection and segmentation in longitudinal MRI data.
Med Phys. 2022 Sep;49(9):5773-5786. doi: 10.1002/mp.15863. Epub 2022 Jul 22.
8
Three-dimensional U-Net Convolutional Neural Network for Detection and Segmentation of Intracranial Metastases.
Radiol Artif Intell. 2021 Mar 10;3(3):e200204. doi: 10.1148/ryai.2021200204. eCollection 2021 May.
9
Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study.
NPJ Digit Med. 2021 Feb 22;4(1):33. doi: 10.1038/s41746-021-00398-4.
10
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验