Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Radiother Oncol. 2024 Jan;190:110007. doi: 10.1016/j.radonc.2023.110007. Epub 2023 Nov 13.
Manual detection of brain metastases is both laborious and inconsistent, driving the need for more efficient solutions. Accordingly, our systematic review and meta-analysis assessed the efficacy of deep learning algorithms in detecting and segmenting brain metastases from various primary origins in MRI images.
We conducted a comprehensive search of PubMed, Embase, and Web of Science up to May 24, 2023, which yielded 42 relevant studies for our analysis. We assessed the quality of these studies using the QUADAS-2 and CLAIM tools. Using a random-effect model, we calculated the pooled lesion-wise dice score as well as patient-wise and lesion-wise sensitivity. We performed subgroup analyses to investigate the influence of factors such as publication year, study design, training center of the model, validation methods, slice thickness, model input dimensions, MRI sequences fed to the model, and the specific deep learning algorithms employed. Additionally, meta-regression analyses were carried out considering the number of patients in the studies, count of MRI manufacturers, count of MRI models, training sample size, and lesion number.
Our analysis highlighted that deep learning models, particularly the U-Net and its variants, demonstrated superior segmentation accuracy. Enhanced detection sensitivity was observed with an increased diversity in MRI hardware, both in terms of manufacturer and model variety. Furthermore, slice thickness was identified as a significant factor influencing lesion-wise detection sensitivity. Overall, the pooled results indicated a lesion-wise dice score of 79%, with patient-wise and lesion-wise sensitivities at 86% and 87%, respectively.
The study underscores the potential of deep learning in improving brain metastasis diagnostics and treatment planning. Still, more extensive cohorts and larger meta-analysis are needed for more practical and generalizable algorithms. Future research should prioritize these areas to advance the field. This study was funded by the Gen. & Mrs. M.C. Peng Fellowship and registered under PROSPERO (CRD42023427776).
手动检测脑转移瘤既费力又不一致,因此需要更有效的解决方案。因此,我们的系统综述和荟萃分析评估了深度学习算法在 MRI 图像中检测和分割来自不同原发部位的脑转移瘤的功效。
我们对 PubMed、Embase 和 Web of Science 进行了全面检索,截至 2023 年 5 月 24 日,共检索到 42 项相关研究纳入我们的分析。我们使用 QUADAS-2 和 CLAIM 工具评估了这些研究的质量。使用随机效应模型,我们计算了病变层面的骰子评分以及患者层面和病变层面的敏感性。我们进行了亚组分析,以研究诸如发表年份、研究设计、模型训练中心、验证方法、切片厚度、模型输入维度、输入到模型的 MRI 序列以及使用的具体深度学习算法等因素的影响。此外,还考虑了研究中的患者数量、MRI 制造商数量、MRI 型号数量、训练样本量和病变数量等因素,进行了元回归分析。
我们的分析表明,深度学习模型,特别是 U-Net 及其变体,表现出更高的分割准确性。MRI 硬件的多样性,无论是制造商还是型号的多样性,都观察到了增强的检测敏感性。此外,切片厚度被确定为影响病变层面检测敏感性的重要因素。总体而言,病变层面的骰子评分为 79%,患者层面和病变层面的敏感性分别为 86%和 87%。
该研究强调了深度学习在改善脑转移瘤诊断和治疗计划方面的潜力。然而,需要更大的队列和更大的荟萃分析来开发更实用和更具普遍性的算法。未来的研究应优先考虑这些领域,以推动该领域的发展。本研究由 Peng 院士和夫人基金资助,并在 PROSPERO(CRD42023427776)下注册。