Andrearczyk Vincent, Schiappacasse Luis, Raccaud Matthieu, Bourhis Jean, Prior John O, Cuendet Michel A, Hottinger Andreas F, Dunet Vincent, Depeursinge Adrien
Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
Institute of Informatics, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland.
Neurooncol Adv. 2025 Jan 10;7(1):vdae216. doi: 10.1093/noajnl/vdae216. eCollection 2025 Jan-Dec.
Effective follow-up of brain metastasis (BM) patients post-treatment is crucial for adapting therapies and detecting new lesions. Current guidelines (Response Assessment in Neuro-Oncology-BM) have limitations, such as patient-level assessments and arbitrary lesion selection, which may not reflect outcomes in high tumor burden cases. Accurate, reproducible, and automated response assessments can improve follow-up decisions, including (1) optimizing re-treatment timing to avoid treating responding lesions or delaying treatment of progressive ones, and (2) enhancing precision in evaluating responses during clinical trials.
We compared manual and automatic (deep learning-based) lesion contouring using unidimensional and volumetric criteria. Analysis focused on (1) agreement in size and RANO-BM categories, (2) stability of measurements under scanner rotations and over time, and (3) predictability of 1-year outcomes. The study included 49 BM patients, with 184 MRI studies and 448 lesions, retrospectively assessed by radiologists.
Automatic contouring and volumetric criteria demonstrated superior stability ( < .001 for rotation; < .05 over time) and better outcome predictability compared to manual methods. These approaches reduced observer variability, offering reliable and efficient response assessments. The best outcome predictability, defined as 1-year response, was achieved using automatic contours and volumetric measurements. These findings highlight the potential of automated tools to streamline clinical workflows and provide consistency across evaluators, regardless of expertise.
Automatic BM contouring and volumetric measurements provide promising tools to improve follow-up and treatment decisions in BM management. By enhancing precision and reproducibility, these methods can streamline clinical workflows and improve the evaluation of response in trials and practice.
脑转移瘤(BM)患者治疗后的有效随访对于调整治疗方案和发现新病灶至关重要。当前指南(神经肿瘤学脑转移瘤反应评估)存在局限性,如患者层面的评估和任意的病灶选择,这可能无法反映高肿瘤负荷病例的治疗结果。准确、可重复且自动化的反应评估可以改善随访决策,包括:(1)优化再治疗时机,以避免对有反应的病灶进行治疗或延迟对进展性病灶的治疗;(2)提高临床试验中反应评估的准确性。
我们使用一维标准和体积标准比较了手动和自动(基于深度学习)的病灶轮廓勾画。分析重点在于:(1)大小和RANO-BM分类的一致性;(2)在扫描旋转和随时间变化时测量的稳定性;(3)1年治疗结果的可预测性。该研究纳入了49例BM患者,有184份MRI研究和448个病灶,由放射科医生进行回顾性评估。
与手动方法相比,自动轮廓勾画和体积标准显示出更高的稳定性(旋转时P<0.001;随时间变化P<0.05)和更好的结果可预测性。这些方法减少了观察者之间的差异,提供了可靠且高效的反应评估。使用自动轮廓和体积测量可实现定义为1年反应的最佳结果可预测性。这些发现凸显了自动化工具简化临床工作流程并在评估者之间提供一致性的潜力,无论其专业水平如何。
自动BM轮廓勾画和体积测量为改善BM管理中的随访和治疗决策提供了有前景的工具。通过提高准确性和可重复性,这些方法可以简化临床工作流程,并改善试验和实践中的反应评估。