Suppr超能文献

基于无人机的RGB图像植被指数在大豆育种中的高通量表型分析

High throughput phenotyping in soybean breeding using RGB image vegetation indices based on drone.

作者信息

Alves Andressa K S, Araújo Maurício S, Chaves Saulo F S, Dias Luiz Antônio S, Corrêdo Lucas P, Pessoa Gabriel G F A, Bezerra André R G

机构信息

Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.

Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil.

出版信息

Sci Rep. 2024 Dec 30;14(1):32055. doi: 10.1038/s41598-024-83807-4.

Abstract

This study investigates the effectiveness of high-throughput phenotyping (HTP) using RGB images from unmanned aerial vehicles (UAVs) to assess vegetation indices (VIs) in different soybean pure lines. The VIs were accessed at various stages of crop development and correlated with agronomic performance traits. The field research was conducted in the experimental area of the Mato Grosso do Sul Foundation, Brazil, with 60 soybean pure lines. RGB images were captured at multiple stages of development (28, 37, 49, 70, 86, 105, 115, and 120 days after sowing). We used a linear mixed effects model, with restricted maximum likelihood (REML)/best linear unbiased prediction (BLUP) methods, to estimate variance components and genetic correlations, and to predict genotypic values. Significant genetic differences were identified among genotypes for all agronomic traits evaluated (p< 0.001), with high accuracy and heritability for plant height, maturity at R8, and 100-seed weight. There was a significant genotype × flight data interaction impact on VI expression, emphasizing the importance of timing data collection to enhance HTP with VIs in agronomic performance evaluation. In the early stages, the indices varied depending on the environment. On the other hand, the indices showed higher correlations with the traits of plant height and maturity at the R8 stage, at 105, 115, and 120 days after sowing. HTP with VIs based on RGB images from UAVs has proven to be more effective in the early and final stages of soybean development, providing essential information for the selection of superior genotypes. This study highlights the importance of the temporal approach in HTP, optimizing the selection of soybean genotypes and refining agricultural management strategies.

摘要

本研究调查了使用无人机(UAV)拍摄的RGB图像进行高通量表型分析(HTP)以评估不同大豆纯系中植被指数(VI)的有效性。在作物发育的各个阶段获取植被指数,并将其与农艺性能性状相关联。田间研究在巴西南马托格罗索基金会的试验区进行,涉及60个大豆纯系。在发育的多个阶段(播种后28、37、49、70、86、105、115和120天)拍摄RGB图像。我们使用线性混合效应模型,采用限制最大似然法(REML)/最佳线性无偏预测法(BLUP)来估计方差成分和遗传相关性,并预测基因型值。在所评估的所有农艺性状中,基因型之间均存在显著的遗传差异(p<0.001),株高、R8期成熟度和百粒重具有较高的准确性和遗传力。基因型×飞行数据交互作用对植被指数表达有显著影响,强调了在农艺性能评估中,为增强基于植被指数的高通量表型分析而进行数据收集时时间安排的重要性。在早期阶段,指数因环境而异。另一方面,在播种后105天、11天和120天的R8阶段,这些指数与株高和成熟度性状的相关性更高。基于无人机RGB图像的植被指数高通量表型分析在大豆发育的早期和后期阶段已被证明更有效,为优良基因型的选择提供了重要信息。本研究强调了时间方法在高通量表型分析中的重要性,优化了大豆基因型的选择并完善了农业管理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaf9/11685969/4030d473ce2a/41598_2024_83807_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验