Dai Yue, Yang Xiangyue, Hao Junchen, Luo Huoling, Mei Guohui, Jia Fucang
College of Information Science and Engineering, Northeastern University, Shenyang, China.
Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Int J Comput Assist Radiol Surg. 2025 Feb;20(2):269-278. doi: 10.1007/s11548-024-03312-x. Epub 2024 Dec 31.
In laparoscopic liver surgery, registering preoperative CT-extracted 3D models with intraoperative laparoscopic video reconstructions of the liver surface can help surgeons predict critical liver anatomy. However, the registration process is challenged by non-rigid deformation of the organ due to intraoperative pneumoperitoneum pressure, partial visibility of the liver surface, and surface reconstruction noise.
First, we learn point-by-point descriptors and encode location information to alleviate the limitations of descriptors in location perception. In addition, we introduce a GeoTransformer to enhance the geometry perception to cope with the problem of inconspicuous liver surface features. Finally, we construct a deep graph matching module to optimize the descriptors and learn overlap masks to robustly estimate the transformation parameters based on representative overlap points.
Evaluation of our method with comparative methods on both simulated and real datasets shows that our method achieves state-of-the-art results, realizing the lowest surface registration error(SRE) 4.12 mm with the highest inlier ratios (IR) 53.31% and match scores (MS) 28.17%.
Highly accurate and robust initialized registration obtained from partial information can be achieved while meeting the speed requirement. Non-rigid registration can further enhance the accuracy of the registration process on this basis.
在腹腔镜肝脏手术中,将术前CT提取的3D模型与术中肝脏表面的腹腔镜视频重建进行配准,有助于外科医生预测关键的肝脏解剖结构。然而,由于术中气腹压力导致器官的非刚性变形、肝脏表面的部分可视性以及表面重建噪声,配准过程面临挑战。
首先,我们逐点学习描述符并编码位置信息,以减轻描述符在位置感知方面的局限性。此外,我们引入了一个地理变换器来增强几何感知,以应对肝脏表面特征不明显的问题。最后,我们构建了一个深度图匹配模块,以优化描述符并学习重叠掩码,从而基于代表性的重叠点稳健地估计变换参数。
在模拟和真实数据集上用比较方法对我们的方法进行评估表明,我们的方法取得了领先的结果,实现了最低的表面配准误差(SRE)4.12毫米,最高内点率(IR)53.31%和匹配分数(MS)28.17%。
在满足速度要求的同时,可以从部分信息中获得高度准确和稳健的初始配准。在此基础上,非刚性配准可以进一步提高配准过程的准确性。