Liu Kerui, Jiang Yuanyuan, Liu Feng, Ran Guangliu, Wang Mengni, Wang Wenxuan, Zhang Wenkai, Wei Zhixiang, Hou Jianhui, Zhu Xiaozhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Mater. 2025 Feb;37(7):e2413376. doi: 10.1002/adma.202413376. Epub 2024 Dec 30.
Highly efficient nonfullerene acceptors (NFAs) for organic solar cells (OSCs) with low energy loss (E) and favorable morphology are critical for breaking the efficiency bottleneck and achieving commercial applications of OSCs. In this work, quinoxaline-based NFAs are designed and synthesized using a synergistic isomerization and bromination approach. The π-expanded quinoxaline-fused core exhibits different bromination sites for isomeric NFAs, namely AQx-21 and AQx-22. Theoretical and experimental analyses reveal that the isomerization effect of core bromination significantly influences molecular intrinsic properties, including electrostatic potentials, polarizability, dielectric constant, exciton binding energy, crystallinity, and miscibility with donor materials, thereby improving molecular packing and bulk-heterojunction morphology. Consequently, the AQx-22-based blend exhibits enhanced crystallinity, reduced domain size, and optimized phase distribution, which facilitates charge transport, suppresses charge recombination, and improves charge extraction. The AQx-22-treated OSCs obtain an impressive efficiency of 19.5% with a remarkable open-circuit voltage of 0.970 V and a low E of 0.476 eV. This study provides deep insights into NFA design and elucidates the potential working mechanisms for optimizing morphology and device performance through isomerization engineering of core bromination, highlighting its significance in advancing OSC technology.
用于有机太阳能电池(OSC)的高效非富勒烯受体(NFA),具有低能量损失(E)和良好的形貌,对于突破效率瓶颈和实现OSC的商业应用至关重要。在这项工作中,采用协同异构化和溴化方法设计并合成了基于喹喔啉的NFA。π-扩展的喹喔啉稠合核心对于异构NFA表现出不同的溴化位点,即AQx-21和AQx-22。理论和实验分析表明,核心溴化的异构化效应显著影响分子固有性质,包括静电势、极化率、介电常数、激子结合能、结晶度以及与供体材料的混溶性,从而改善分子堆积和体相异质结形貌。因此,基于AQx-22的共混物表现出增强的结晶度、减小的畴尺寸和优化的相分布,这有利于电荷传输、抑制电荷复合并改善电荷提取。经AQx-22处理的OSC获得了令人印象深刻的19.5%的效率,具有0.970 V的显著开路电压和0.476 eV的低E。本研究为NFA设计提供了深入见解,并阐明了通过核心溴化的异构化工程优化形貌和器件性能的潜在工作机制,突出了其在推进OSC技术方面的重要性。