Suppr超能文献

通过使用生成对抗网络(GAN)风格转换减少CT设备间差异,提高间质性肺疾病量化的功能相关性。

Improving functional correlation of quantification of interstitial lung disease by reducing the vendor difference of CT using generative adversarial network (GAN) style conversion.

作者信息

Choe Jooae, Hwang Hye Jeon, Kim Min Seon, Ye Jong Chul, Oh Gyutaek, Lee Sang Min, Yun Jihye, Lee Ho Yun, Sun Joo Sung, You Seulgi, Yi Jaeyoun, Seo Joon Beom

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.

出版信息

Eur J Radiol. 2025 Feb;183:111899. doi: 10.1016/j.ejrad.2024.111899. Epub 2024 Dec 22.

Abstract

OBJECTIVE

To assess whether CT style conversion between different CT vendors using a routable generative adversarial network (RouteGAN) could minimize variation in ILD quantification, resulting in improved functional correlation of quantitative CT (QCT) measures.

METHODS

Patients with idiopathic pulmonary fibrosis (IPF) who underwent unenhanced chest CTs with vendor A and a pulmonary function test (PFT) were retrospectively evaluated. As deep-learning based ILD quantification software was mainly developed using vendor B CT, style-converted images from vendor A to B style were generated using RouteGAN. Quantification was performed in both original and converted images. Measurement variability in QCT between original and converted images was evaluated using the concordance correlation coefficient (CCC). Two radiologists visually evaluated quantification accuracy using original and converted images. Correlations between CT parameters and PFT measures were assessed.

RESULTS

Total 112 patients (mean age, 61; 82 men) were studied. Measurement variability between original and converted CT was a CCC of 0.20 for reticulation, 0.72 for honeycombing, and 0.59 for ground-glass opacity. The median visual accuracy scores were higher for the quantification using converted compared with the original images (P < 0.001). Correlation between fibrosis score increased significantly after CT conversion for both forced vital capacity (original vs. converted; -0.35 vs. -0.50; P = 0.005) and diffusing capacity of the lung for carbon monoxide (-0.50 vs. -0.66; P < 0.001).

CONCLUSION

The improved accuracy in deep learning based ILD quantification after applying GAN-based CT style conversion can result in the improved functional correlation of QCT measurements in patients with IPF.

摘要

目的

评估使用可路由生成对抗网络(RouteGAN)在不同CT供应商之间进行CT样式转换是否可以最小化间质性肺病(ILD)定量的差异,从而改善定量CT(QCT)测量的功能相关性。

方法

对接受供应商A的非增强胸部CT和肺功能测试(PFT)的特发性肺纤维化(IPF)患者进行回顾性评估。由于基于深度学习的ILD定量软件主要是使用供应商B的CT开发的,因此使用RouteGAN生成从供应商A到B样式的样式转换图像。在原始图像和转换后的图像中均进行定量。使用一致性相关系数(CCC)评估原始图像和转换后图像之间QCT的测量变异性。两名放射科医生使用原始图像和转换后的图像直观地评估定量准确性。评估CT参数与PFT测量之间的相关性。

结果

共研究了112例患者(平均年龄61岁;男性82例)。原始CT和转换后CT之间的测量变异性对于网状结构为CCC 0.20,对于蜂窝状为0.72,对于磨玻璃影为0.59。与原始图像相比,使用转换后的图像进行定量时,视觉准确性得分中位数更高(P <0.001)。对于用力肺活量(原始值与转换后的值;-0.35对-0.50;P = 0.005)和一氧化碳肺弥散量(-0.50对-0.66;P <0.001),CT转换后纤维化评分之间的相关性均显著增加。

结论

应用基于GAN的CT样式转换后,基于深度学习的ILD定量准确性提高,可改善IPF患者QCT测量的功能相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验