Suppr超能文献

基于深度学习的间质性肺疾病量化中CT重建内核转换:对可重复性的影响

Deep Learning-Based CT Reconstruction Kernel Conversion in the Quantification of Interstitial Lung Disease: Effect on Reproducibility.

作者信息

Ahn Yura, Lee Sang Min, Nam Yujin, Lee Hyunna, Choe Jooae, Do Kyung-Hyun, Seo Joon Beom

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Republic of Korea (Y.A., S.M.L., J.C., K.-H.D., J.B.S.).

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Republic of Korea (Y.A., S.M.L., J.C., K.-H.D., J.B.S.).

出版信息

Acad Radiol. 2024 Feb;31(2):693-705. doi: 10.1016/j.acra.2023.06.008. Epub 2023 Jul 27.

Abstract

RATIONALE AND OBJECTIVES

The effect of different computed tomography (CT) reconstruction kernels on the quantification of interstitial lung disease (ILD) has not been clearly demonstrated. The study aimed to investigate the effect of reconstruction kernels on the quantification of ILD on CT and determine whether deep learning-based kernel conversion can reduce the variability of automated quantification results between different CT kernels.

MATERIALS AND METHODS

Patients with ILD or interstitial lung abnormality who underwent noncontrast high-resolution CT between June 2022 and September 2022 were retrospectively included. Images were reconstructed with three different kernels: B30f, B50f, and B60f. B60f was regarded as the reference standard for quantification, and B30f and B50f images were converted to B60f images using a deep learning-based algorithm. Each disease pattern of ILD and the fibrotic score were quantified using commercial software. The effect of kernel conversion on measurement variability was estimated using intraclass correlation coefficient (ICC) and Bland-Altman method.

RESULTS

A total of 194 patients were included in the study. Application of different kernels induced differences in the quantified extent of each pattern. Reticular opacity and honeycombing were underestimated on B30f images and overestimated on B50f images. After kernel conversion, measurement variability was reduced (mean difference, from -2.0 to 3.9 to -0.3 to 0.4%, and 95% limits of agreement [LOA], from [-5.0, 12.7] to [-2.7, 2.1]). The fibrotic score for converted B60f from B50f images was almost equivalent to the original B60f (ICC, 1.000; mean difference, 0.0; and 95% LOA [-0.4, 0.4]).

CONCLUSION

Quantitative CT analysis of ILD was affected by the application of different kernels, but deep learning-based kernel conversion effectively reduced measurement variability, improving the reproducibility of quantification.

摘要

原理与目的

不同计算机断层扫描(CT)重建核对于间质性肺疾病(ILD)定量分析的影响尚未得到明确证实。本研究旨在探讨重建核对CT上ILD定量分析的影响,并确定基于深度学习的核转换是否能够减少不同CT核之间自动定量结果的变异性。

材料与方法

回顾性纳入2022年6月至2022年9月期间接受非增强高分辨率CT检查的ILD或间质性肺异常患者。图像使用三种不同的核进行重建:B30f、B50f和B60f。将B60f视为定量分析的参考标准,并使用基于深度学习的算法将B30f和B50f图像转换为B60f图像。使用商业软件对ILD的每种疾病模式和纤维化评分进行定量分析。使用组内相关系数(ICC)和Bland-Altman方法评估核转换对测量变异性的影响。

结果

本研究共纳入194例患者。应用不同的核对每种模式的定量范围产生了差异。B30f图像上的网状阴影和蜂窝状改变被低估,而在B50f图像上被高估。核转换后,测量变异性降低(平均差异,从-2.0至3.9降至-0.3至0.4%,95%一致性界限[LOA],从[-5.0, 12.7]降至[-2.7, 2.1])。从B50f图像转换而来的B60f的纤维化评分几乎与原始B60f相同(ICC,1.000;平均差异,0.0;95% LOA [-0.4, 0.4])。

结论

ILD的CT定量分析受不同核应用的影响,但基于深度学习的核转换有效降低了测量变异性,提高了定量分析的可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验