Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Robotics Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Korean J Radiol. 2023 Aug;24(8):807-820. doi: 10.3348/kjr.2023.0088.
To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software.
This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system.
Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher ( < 0.001) and less variable on converted CT.
CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.
评估使用可路由生成对抗网络(RouteGAN)对不同扫描参数和制造商的计算机断层扫描(CT)进行转换是否可以提高基于深度学习的自动软件定量评估间质性肺病(ILD)的准确性和可变性。
本研究纳入了接受薄层 CT 检查的ILD 患者。根据采集条件,将来自 4 个制造商(供应商 A-D)的扫描仪获得的不匹配 CT 图像、标准或低辐射剂量以及锐利或中等内核分为 1-7 组。使用 RouteGAN 将第 2-7 组的 CT 图像转换为目标 CT 样式(第 1 组:供应商 A、标准剂量和锐利内核)。使用基于深度学习的软件(Aview、Coreline Soft)对原始和转换的 CT 图像进行 ILD 定量。使用放射科医生的手动定量评估分析定量的准确性,使用 Dice 相似系数(DSC)和像素级重叠精度指标进行分析。5 名放射科医生使用 10 分视觉评分系统评估定量准确性。
共纳入 150 例患者 350 个 CT 层面(平均年龄:67.6±10.7 岁,56 例女性)。转换后的 CT 后,定量评估各组中总异常的重叠准确性提高(原始 vs. 转换:DSC 为 0.63 vs. 0.68,像素级召回为 0.66 vs. 0.70,像素级精度为 0.68 vs. 0.73;所有 P 值均<0.002)。纤维化评分、蜂巢和网状结构的 DSC 显著增加(0.32 vs. 0.64、0.19 vs. 0.47 和 0.23 vs. 0.54;所有 P 值均<0.002),而磨玻璃影、实变和肺气肿的 DSC 无明显变化或略有降低。放射科医生的评分在转换后的 CT 上显著升高(P<0.001),且变异性更小。
使用 RouteGAN 进行 CT 转换可以提高使用不同扫描参数和制造商的 CT 图像在基于深度学习的 ILD 定量中的准确性和可变性。