Suppr超能文献

使用机器学习模型预测通过气管胃蛋白酶A测量的微量误吸

Use of Machine Learning Models to Predict Microaspiration Measured by Tracheal Pepsin A.

作者信息

Bourgault Annette, Logvinov Ilana, Liu Chang, Xie Rui, Powers Jan, Sole Mary Lou

机构信息

Annette Bourgault is an associate professor in Nursing, University of Central Florida College of Nursing, Orlando.

Ilana Logvinov is a PhD student in Nursing, University of Central Florida College of Nursing, Orlando.

出版信息

Am J Crit Care. 2025 Jan 1;34(1):67-71. doi: 10.4037/ajcc2025349.

Abstract

BACKGROUND

Enteral feeding intolerance, a common type of gastrointestinal dysfunction leading to underfeeding, is associated with increased mortality. Tracheal pepsin A, an indicator of microaspiration, was found in 39% of patients within 24 hours of enteral feeding. Tracheal pepsin A is a potential biomarker of enteral feeding intolerance.

OBJECTIVE

To identify predictors of microaspiration (tracheal or oral pepsin A). It was hypothesized that variables predicting the presence of tracheal pepsin A might be similar to predictors of enteral feeding intolerance.

METHODS

In this secondary analysis, machine learning models were fit for 283 adults receiving mechanical ventilation who had tracheal and oral aspirates obtained every 12 hours for up to 14 days. Pepsin A levels were measured using the proteolytic enzyme assay method, and values of 6.25 ng/mL or higher were classified as indicating microaspiration. Demographics, comorbidities, and variables associated with enteral feeding were analyzed with 3 machine learning models-random forest, XGBoost, and support vector machines with recursive feature elimination-using 5-fold cross-validation tuning.

RESULTS

Random forest for tracheal pepsin A was the best-performing model (area under the curve, 0.844 [95% CI, 0.792-0.897]; accuracy, 87.55%). The top 20 predictors of tracheal pepsin A were identified.

CONCLUSION

Four predictor variables for tracheal pepsin A (microaspiration) are also reported predictors of enteral feeding intolerance, supporting the exploration of tracheal pepsin A as a potential biomarker of enteral feeding intolerance. Identification of predictor variables using machine learning models may facilitate treatment of patients at risk for enteral feeding intolerance.

摘要

背景

肠内营养不耐受是导致喂养不足的常见胃肠功能障碍类型,与死亡率增加相关。在肠内营养开始24小时内,39%的患者气管中检测到胃蛋白酶A,这是微量误吸的一个指标。气管胃蛋白酶A是肠内营养不耐受的一个潜在生物标志物。

目的

确定微量误吸(气管或口腔胃蛋白酶A)的预测因素。研究假设是,预测气管胃蛋白酶A存在的变量可能与肠内营养不耐受的预测因素相似。

方法

在这项二次分析中,对283例接受机械通气的成人进行机器学习模型拟合,这些患者每12小时采集气管和口腔吸出物,持续14天。采用蛋白水解酶测定法测量胃蛋白酶A水平,6.25 ng/mL或更高的值被分类为提示微量误吸。使用随机森林、XGBoost和带递归特征消除的支持向量机这3种机器学习模型,通过5折交叉验证调整,分析人口统计学、合并症以及与肠内营养相关的变量。

结果

气管胃蛋白酶A的随机森林模型是表现最佳的模型(曲线下面积为0.844[95%CI,0.792-0.897];准确率为87.55%)。确定了气管胃蛋白酶A的前20个预测因素。

结论

还报告了气管胃蛋白酶A(微量误吸)的4个预测变量也是肠内营养不耐受的预测因素,这支持将气管胃蛋白酶A作为肠内营养不耐受的潜在生物标志物进行探索。使用机器学习模型识别预测变量可能有助于治疗有肠内营养不耐受风险的患者。

相似文献

2

本文引用的文献

1
The future of artificial intelligence in clinical nutrition.人工智能在临床营养中的未来。
Curr Opin Clin Nutr Metab Care. 2024 Mar 1;27(2):200-206. doi: 10.1097/MCO.0000000000000977. Epub 2023 Aug 29.
2
Gastrointestinal function in critically ill patients.危重症患者的胃肠功能。
Curr Opin Clin Nutr Metab Care. 2023 Sep 1;26(5):463-469. doi: 10.1097/MCO.0000000000000955. Epub 2023 Jun 19.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验