Suppr超能文献

使用机器学习评估危重症患者早期肠内喂养不耐受的预后价值:一项回顾性研究。

Using Machine-Learning to Assess the Prognostic Value of Early Enteral Feeding Intolerance in Critically Ill Patients: A Retrospective Study.

机构信息

Industrial Engineering and Management, Ariel University, Ariel 40700, Israel.

Institute for Nutrition Research, Beilinson Hospital, Rabin Medical Center, Petah Tikva 4941492, Israel.

出版信息

Nutrients. 2023 Jun 10;15(12):2705. doi: 10.3390/nu15122705.

Abstract

BACKGROUND

The association between gastrointestinal intolerance during early enteral nutrition (EN) and adverse clinical outcomes in critically ill patients is controversial. We aimed to assess the prognostic value of enteral feeding intolerance (EFI) markers during early ICU stays and to predict early EN failure using a machine learning (ML) approach.

METHODS

We performed a retrospective analysis of data from adult patients admitted to Beilinson Hospital ICU between January 2011 and December 2018 for more than 48 h and received EN. Clinical data, including demographics, severity scores, EFI markers, and medications, along with 72 h after admission, were analyzed by ML algorithms. Prediction performance was assessed by the area under the receiver operating characteristics (AUCROC) of a ten-fold cross-validation set.

RESULTS

The datasets comprised 1584 patients. The means of the cross-validation AUCROCs for 90-day mortality and early EN failure were 0.73 (95% CI 0.71-0.75) and 0.71 (95% CI 0.67-0.74), respectively. Gastric residual volume above 250 mL on the second day was an important component of both prediction models.

CONCLUSIONS

ML underlined the EFI markers that predict poor 90-day outcomes and early EN failure and supports early recognition of at-risk patients. Results have to be confirmed in further prospective and external validation studies.

摘要

背景

在危重症患者中,早期肠内营养(EN)期间胃肠道不耐受与不良临床结局之间的关联存在争议。我们旨在评估 ICU 早期肠内喂养不耐受(EFI)标志物的预后价值,并通过机器学习(ML)方法预测早期 EN 失败。

方法

我们对 2011 年 1 月至 2018 年 12 月期间入住贝林森医院 ICU 超过 48 小时并接受 EN 的成年患者的数据进行了回顾性分析。通过 ML 算法分析了临床数据,包括人口统计学、严重程度评分、EFI 标志物和药物,以及入院后 72 小时。通过十折交叉验证集的受试者工作特征曲线(ROC)下面积(AUCROC)评估预测性能。

结果

数据集包含 1584 名患者。90 天死亡率和早期 EN 失败的交叉验证 AUCROC 的平均值分别为 0.73(95%CI 0.71-0.75)和 0.71(95%CI 0.67-0.74)。第二天胃残留量超过 250mL 是两个预测模型的重要组成部分。

结论

ML 强调了预测不良 90 天结局和早期 EN 失败的 EFI 标志物,并支持早期识别高危患者。结果需要在进一步的前瞻性和外部验证研究中得到证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf3/10305247/41d94fd9624c/nutrients-15-02705-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验