Wiebe Annika, Selaskowski Benjamin, Paskin Martha, Asché Laura, Pakos Julian, Aslan Behrem, Lux Silke, Philipsen Alexandra, Braun Niclas
Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
Department of Visual and Data-Centric Computing, Zuse Institut Berlin, Berlin, Germany.
Transl Psychiatry. 2024 Dec 31;14(1):508. doi: 10.1038/s41398-024-03217-y.
Given the heterogeneous nature of attention-deficit/hyperactivity disorder (ADHD) and the absence of established biomarkers, accurate diagnosis and effective treatment remain a challenge in clinical practice. This study investigates the predictive utility of multimodal data, including eye tracking, EEG, actigraphy, and behavioral indices, in differentiating adults with ADHD from healthy individuals. Using a support vector machine model, we analyzed independent training (n = 50) and test (n = 36) samples from two clinically controlled studies. In both studies, participants performed an attention task (continuous performance task) in a virtual reality seminar room while encountering virtual distractions. Task performance, head movements, gaze behavior, EEG, and current self-reported inattention, hyperactivity, and impulsivity were simultaneously recorded and used for model training. Our final model based on the optimal number of features (maximal relevance minimal redundancy criterion) achieved a promising classification accuracy of 81% in the independent test set. Notably, the extracted EEG-based features had no significant contribution to this prediction and therefore were not included in the final model. Our results suggest the potential of applying ecologically valid virtual reality environments and integrating different data modalities for enhancing robustness of ADHD diagnosis.
鉴于注意力缺陷多动障碍(ADHD)的异质性以及缺乏既定的生物标志物,在临床实践中,准确诊断和有效治疗仍然是一项挑战。本研究调查了多模态数据(包括眼动追踪、脑电图、活动记录仪和行为指标)在区分患有ADHD的成年人与健康个体方面的预测效用。我们使用支持向量机模型,分析了来自两项临床对照研究的独立训练样本(n = 50)和测试样本(n = 36)。在两项研究中,参与者在虚拟现实研讨室中执行一项注意力任务(持续操作任务),同时会遇到虚拟干扰。任务表现、头部运动、注视行为、脑电图以及当前自我报告的注意力不集中、多动和冲动情况被同时记录下来,并用于模型训练。我们基于最佳特征数量(最大相关性最小冗余标准)的最终模型在独立测试集中实现了81%的可观分类准确率。值得注意的是,提取的基于脑电图的特征对该预测没有显著贡献,因此未被纳入最终模型。我们的结果表明,应用生态有效虚拟现实环境并整合不同数据模式以提高ADHD诊断的稳健性具有潜力。