Suppr超能文献

在机器学习中利用层次分析法和迁移学习改进传染病爆发预测

Leveraging AHP and transfer learning in machine learning for improved prediction of infectious disease outbreaks.

作者信息

Abdallah Reham, Abdelgaber Sayed, Sayed Hanan Ali

机构信息

Information Systems Department, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt.

Public Health and community medicine Department, Theodor Bilharz Research Institute, Helwan University, Cairo, Egypt.

出版信息

Sci Rep. 2024 Dec 31;14(1):32163. doi: 10.1038/s41598-024-81367-1.

Abstract

Infectious diseases significantly impact both public health and economic stability, underscoring the critical need for precise outbreak predictions to effictively mitigate their impact. This study applies advanced machine learning techniques to forecast outbreaks of Dengue, Chikungunya, and Zika, utilizing a comprehensive dataset comprising climate and socioeconomic data. Spanning the years 2007 to 2017, the dataset includes 1716 instances characterized by 27 distinct features. The researchers adopt the Analytic Hierarchy Process (AHP) for feature selection and integrated transfer learning to boost the accuracy of the study's predictions. The researchers' approach involves the deployment of several machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, and an ensemble of these methods. The result reveals that the ensemble model is particularly effective, achieving the highest accuracy rate of 96.80% and an AUC of 0.9197 for predicting Zika outbreaks. Furthermore, it exhibts consistent performance across various metrics. Notably, in the context of Chikungunya, this model achieves an optimal balance between precision and recall, with an accuracy of 93.31%, a precision of 57%, and a recall of 63%, highlighting its reliability for effective outbreak prediction.

摘要

传染病对公共卫生和经济稳定都有重大影响,凸显了精确预测疫情以有效减轻其影响的迫切需求。本研究应用先进的机器学习技术来预测登革热、基孔肯雅热和寨卡病毒的疫情,利用了一个包含气候和社会经济数据的综合数据集。该数据集涵盖2007年至2017年,包括1716个实例,具有27个不同特征。研究人员采用层次分析法(AHP)进行特征选择,并集成迁移学习以提高研究预测的准确性。研究人员的方法涉及部署多种机器学习算法,包括随机森林、XGBoost、梯度提升以及这些方法的集成。结果表明,集成模型特别有效,在预测寨卡病毒疫情时达到了96.80%的最高准确率和0.9197的AUC。此外,它在各种指标上表现出一致的性能。值得注意的是,在基孔肯雅热方面,该模型在精确率和召回率之间实现了最佳平衡,准确率为93.31%,精确率为57%,召回率为63%,突出了其在有效疫情预测方面的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad0e/11688429/57d5deb51802/41598_2024_81367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验