Programa de Computação Científica (PROCC)/Fiocruz, Rio de Janeiro, RJ, Brazil.
IMPA, Rio de Janeiro, RJ, Brazil.
PLoS One. 2019 Aug 8;14(8):e0220106. doi: 10.1371/journal.pone.0220106. eCollection 2019.
Local climate conditions play a major role in the biology of the Aedes aegypti mosquito, the main vector responsible for transmitting dengue, zika, chikungunya and yellow fever in urban centers. For this reason, a detailed assessment of periods in which changes in climate conditions affect the number of human cases may improve the timing of vector-control efforts. In this work, we develop new machine-learning algorithms to analyze climate time series and their connection to the occurrence of dengue epidemic years for seven Brazilian state capitals. Our method explores the impact of two key variables-frequency of precipitation and average temperature-during a wide range of time windows in the annual cycle. Our results indicate that each Brazilian state capital considered has its own climate signatures that correlate with the overall number of human dengue-cases. However, for most of the studied cities, the winter preceding an epidemic year shows a strong predictive power. Understanding such climate contributions to the vector's biology could lead to more accurate prediction models and early warning systems.
本地气候条件对埃及伊蚊的生物学特性起着重要作用,埃及伊蚊是主要的传播媒介,负责在城市中心传播登革热、寨卡、基孔肯雅热和黄热病。出于这个原因,详细评估气候条件变化影响人类病例数量的时期可能会改善病媒控制工作的时机。在这项工作中,我们开发了新的机器学习算法来分析气候时间序列及其与七个巴西州府登革热流行年份发生的关系。我们的方法探讨了在年周期的广泛时间窗口内,降水频率和平均温度这两个关键变量的影响。我们的结果表明,所考虑的每个巴西州府都有其自己的气候特征,与总人数相关登革热病例。然而,对于大多数研究城市,流行年前的冬季表现出很强的预测能力。了解这种对病媒生物学的气候贡献可以导致更准确的预测模型和早期预警系统。