Suppr超能文献

新型冠状病毒肺炎患者的临床及超声特征与住院预后的关系。电子新冠项目。

Clinical and ultrasound characteristics in patients with sars-cov-2 pneumonia, associated with hospitalization prognosis. e-covid project.

作者信息

Ramon Noemí Fàbrega, Bravo Marta Ortega, Cortada Gerard Torres, Culleré Joaquim Sol, Cabús Mònica Solanes, Peruga Jose María Palacín

机构信息

Centre d'Atenció Primària Onze de Setembre. Gerència Territorial de Lleida, Institut Català de La Salut, Passeig 11 de Setembre,10 , 25005, Lleida, Spain.

Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.

出版信息

BMC Pulm Med. 2024 Dec 31;24(1):638. doi: 10.1186/s12890-024-03439-2.

Abstract

BACKGROUND

During the COVID-19 pandemia, the imaging test of choice to diagnose COVID-19 pneumonia as chest computed tomography (CT). However, access was limited in the hospital setting and patients treated in Primary Care (PC) could only access the chest x-ray as an imaging test. Several scientific articles that demonstrated the sensitivity of lung ultrasound, being superior to chest x-ray [Cleverley J et al., BMJ 370, 202013] and comparable to CT scan [Tung-Chen Y et al., Ultrasound Med Biol 46:2918-2926, 2020], promoted the incorporation of this technique in the assessment of COVID-19 patients in PC. [Pérez J et al., Arch. Bronconeumol 56:27-30, 2020; Gargani L et al., Eur Heart J Cardiovasc Imaging 21:941-8, 2020, Soldati G et al., J Ultrasound Med 39:1459, 2020] A prior study in our territory (Lleida, Spain) was designed to predict complications (hospital admission) of COVID-19 pneumonia in PC patients, being different patterns of Lung ultrasounds (LUS) risk factors for hospital admission. [Martínez Redondo J et al., Int J Environ Res Public Health 18:3481, 2021] The rationale for conducting this study lies in the urgent need to understand the determinants of severity and prognosis in COVID-19 patients with interstitial pneumonia, according to its lung ultrasound patterns. This research is crucial to provide a deeper understanding of how these pre-existing ultrasound patterns related to disease progression influence the medical treatment.

METHODS

The objective of the study is to generate predictive models of lung ultrasound patterns for the prediction of lung areas characteristics associated with hospitalizations and admissions to the Intensive Care Unit (ICU) associated with COVID-19 disease, using ultrasound, sociodemographic and medical data obtained through the computerized medical history.

RESULTS

A single relevant variable has been found for the prediction of hospitalization (number of total regions with potentially pathological presence of B lines) and one for the prediction of ICU admission (number of regions of the right lung with potentially pathological presence of B lines). In both cases it has been determined that the optimal point for classification was 2 or more lung affected areas. Those areas under the curve have been obtained with good predictive capacity and consistency in both cohorts.

CONCLUSIONS

The results of this study will contribute to the determination of the ultrasound prognostic value based on the number of lung areas affected, the presence of pulmonary condensation or the irregularity of pleural effusion patterns in COVID-19 patients, being able to be extended to other lung viral infections with similar patterns.

摘要

背景

在新冠疫情期间,用于诊断新冠病毒性肺炎的首选影像学检查是胸部计算机断层扫描(CT)。然而,在医院环境中,CT检查的获取受限,在基层医疗(PC)机构接受治疗的患者只能进行胸部X光检查作为影像学检查。几篇科学文章表明,肺部超声的敏感性优于胸部X光检查[Cleverley J等人,《英国医学杂志》370, 202013],且与CT扫描相当[Tung-Chen Y等人,《超声医学与生物学》46:2918 - 2926, 2020],这促使该技术被纳入基层医疗机构对新冠患者的评估中。[Pérez J等人,《支气管肺科档案》56:27 - 30, 2020;Gargani L等人,《欧洲心脏杂志心血管成像》21:941 - 8, 2020;Soldati G等人,《超声医学杂志》39:1459, 2020]我们所在地区(西班牙莱里达)之前的一项研究旨在预测基层医疗机构中新冠病毒性肺炎患者的并发症(住院情况),不同的肺部超声(LUS)模式是住院的风险因素。[Martínez Redondo J等人,《国际环境研究与公共卫生杂志》18:3481, 2021]开展这项研究的基本原理在于迫切需要根据肺部超声模式了解新冠间质性肺炎患者病情严重程度和预后的决定因素。这项研究对于更深入理解这些与疾病进展相关的既有超声模式如何影响医学治疗至关重要。

方法

本研究的目的是利用通过电子病历获取的超声、社会人口统计学和医学数据,生成肺部超声模式的预测模型,以预测与新冠疾病相关的住院和重症监护病房(ICU)收治情况的肺部区域特征。

结果

已发现一个用于预测住院情况的单一相关变量(存在潜在病理性B线的总区域数)和一个用于预测ICU收治情况的变量(右肺存在潜在病理性B线的区域数)。在这两种情况下,均已确定分类的最佳点为2个或更多肺部受累区域。在两个队列中均获得了具有良好预测能力和一致性的曲线下面积。

结论

本研究结果将有助于根据新冠患者肺部受累区域数量、肺实变情况或胸腔积液模式的不规则性来确定超声的预后价值,并且能够推广到具有相似模式的其他肺部病毒感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c507/11686988/656d88e291bd/12890_2024_3439_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验