Suppr超能文献

原始及表面功能化氧化锌纳米线对HS气体的光学和电学传感机制

Mechanism of Optical and Electrical HS Gas Sensing of Pristine and Surface Functionalized ZnO Nanowires.

作者信息

Kaiser Angelika, Mauritz Tanja, Bansmann Joachim, Biskupek Johannes, Herr Ulrich, Thonke Klaus

机构信息

Institute of Functional Nanosystems, University Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany.

Semiconductor Physics Group, University Ulm, 89081 Ulm, Germany.

出版信息

ACS Omega. 2024 Dec 12;9(51):50188-50200. doi: 10.1021/acsomega.4c04412. eCollection 2024 Dec 24.

Abstract

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering. Detailed X-ray photoelectron spectroscopy (XPS) analysis, alongside an experimental estimation of activation energies ( ) involved in the HS sensing process, and the application of a simple analytical test allowed us to propose a complete picture of the sensing mechanism on the pristine ZnO surface and the Au@ZnO surface. The combined results hint at HS dissociation via surface interaction and irreversible adsorption dynamics for both material systems occurring already at room temperature. Our findings specifically emphasize the impact of Au functionalization morphology on sensor sensitivity and the beneficial importance of chemical affinity between Au and HS for superior HS sensing results, aiming at enhanced response and selectivity for potential medical HS detection in human breath.

摘要

在这项工作中,通过对光学和电气气体传感的并排比较,探索了两种纳米材料系统(原始氧化锌(ZnO)纳米线(NWs)和金功能化氧化锌纳米线(Au@ZnO NWs))上HS吸附的传感能力和潜在反应途径。通过对生长态ZnO NW样品的光致发光强度随时间测量(-)来分析光学传感特性,通过对具有气敏开栅的ZnO NW化学敏感场效应晶体管(ChemFET)结构的电流随时间测量(-)来分析电气气敏特性。ZnO NW通过高温化学气相沉积(CVD)生长,然后通过磁控溅射用薄金纳米颗粒层进行表面功能化。详细的X射线光电子能谱(XPS)分析,以及对HS传感过程中涉及的活化能( )的实验估计,以及简单分析测试的应用,使我们能够提出原始ZnO表面和Au@ZnO表面传感机制的完整图景。综合结果表明,两种材料系统在室温下就已经通过表面相互作用和不可逆吸附动力学发生HS解离。我们的研究结果特别强调了Au功能化形态对传感器灵敏度的影响,以及Au与HS之间化学亲和力对优异HS传感结果的有益重要性,旨在提高对人体呼出气体中潜在医疗HS检测的响应和选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070a/11683626/e567e277c7d4/ao4c04412_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验