Dani Andrea Tri Rian
Department of Physics, Faculty of Mathematics and Natural Science, Mulawarman University.
Department of Mathematics, Faculty of Mathematics and Natural Science, Mulawarman University.
MethodsX. 2024 Dec 4;14:103080. doi: 10.1016/j.mex.2024.103080. eCollection 2025 Jun.
Modeling rainfall data is critical as one of the steps to mitigate natural disasters due to weather changes. This research compares the goodness of traditional and machine learning models for predicting rainfall in Samarinda City. Monthly rainfall data was recapitulated by the Meteorology, Climatology, and Geophysics Agency from 2000 to 2020. The traditional models used are Exponential Smoothing and ARIMA, while the machine learning model is a Neural Network. Data is divided into training and testing with a proportion of 90:10. Evaluation of goodness-of-fit using Root Mean Squared Error Prediction (RMSEP). The research results show that the Neural Network has better accuracy in predicting rainfall in Samarinda. Forecasting results indicate that monthly rainfall trends suggest that the months with the highest rainfall occur around November to March. This research provides important implications for developing a warning system for hydrometeorological disasters in Samarinda. The superior points in this research are:•Modeling rainfall data in Samarinda City using several forecasting methods: Exponential Smoothing, ARIMA, and Neural Network.•The Neural-Network algorithm used is Backpropagation with data standardization.•Information about predicted high rainfall can be used to issue early warnings of floods or landslides. Disaster mitigation through policies to regulate water discharge based on rainfall predictions to prevent floods and drought.
对降雨数据进行建模作为减轻气候变化所致自然灾害的步骤之一至关重要。本研究比较了传统模型和机器学习模型对三马林达市降雨的预测效果。2000年至2020年的月降雨数据由气象、气候和地球物理局汇总。使用的传统模型是指数平滑法和自回归积分移动平均模型(ARIMA),而机器学习模型是神经网络。数据按90:10的比例分为训练集和测试集。使用均方根误差预测(RMSEP)评估拟合优度。研究结果表明,神经网络在预测三马林达市降雨方面具有更高的准确性。预测结果表明,月降雨趋势显示降雨量最高的月份出现在11月至次年3月左右。本研究为开发三马林达市水文气象灾害预警系统提供了重要启示。本研究的优点包括:
• 使用指数平滑法、自回归积分移动平均模型(ARIMA)和神经网络等几种预测方法对三马林达市的降雨数据进行建模。
• 所使用的神经网络算法是带有数据标准化的反向传播算法。
• 有关预测高降雨量的数据可用于发布洪水或山体滑坡的早期预警。
• 通过基于降雨预测制定调节排水的政策来减轻灾害,以预防洪水和干旱。