Zott Michael D, Peters Jonas C
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
ACS Catal. 2023 Nov 3;13(21):14052-14057. doi: 10.1021/acscatal.3c03772. Epub 2023 Oct 18.
Molecular ammonia oxidation (AO) catalysis is a rapidly evolving research area. Among the catalysts studied, featuring metals including ruthenium, iron, manganese, nickel, and copper, polypyridyl iron complexes are attractive owing to fast catalytic rates and significant turnover numbers (TON). Building upon our previous work on AO using [(TPA)Fe(MeCN)] and [(BPM)Fe(MeCN)], this study investigates factors that impact rate and TON within and across catalyst series based on polypyridyl ligand frameworks. The synthesis and analysis of derivatives functionalized in the 4-pyridyl position with electron-donating and electron-withdrawing groups (NMe, OMe, CF) are described; a combination of electroanalytical, UV-vis, and NMR analyses provide insights into the relative importance of catalyst standard potential (°) and 4-pyridyl substituent to rate and stability. These findings constrain hypotheses rationalizing the nature of improved catalysis comparing two classes of polypyridyl ligands for [(L)Fe(MeCN)] species, and help define a roadmap for future catalyst development. For the most active catalyst studied herein, [(BPM)Fe(MeCN)], a TON of 381 is demonstrated after 48 h of sustained catalysis.
分子氨氧化(AO)催化是一个快速发展的研究领域。在所研究的催化剂中,包括钌、铁、锰、镍和铜等金属,聚吡啶铁配合物因其快速的催化速率和显著的周转数(TON)而具有吸引力。基于我们之前使用[(TPA)Fe(MeCN)]和[(BPM)Fe(MeCN)]进行氨氧化的工作,本研究调查了基于聚吡啶配体框架的催化剂系列内部和之间影响速率和TON的因素。描述了在4-吡啶基位置用供电子和吸电子基团(NMe、OMe、CF)官能化的衍生物的合成和分析;电化学分析、紫外可见光谱和核磁共振分析相结合,深入了解了催化剂标准电势(°)和4-吡啶基取代基对速率和稳定性的相对重要性。这些发现限制了关于比较[(L)Fe(MeCN)]物种的两类聚吡啶配体时催化性能提高本质的假设,并有助于确定未来催化剂开发的路线图。对于本文研究的最活跃的催化剂[(BPM)Fe(MeCN)],在持续催化48小时后,周转数达到381。